
Final report for the ONR award "Numerical Methods for Computing

Turbulence-Induced Noise"

ONR Grant No. 00014-02-1-0425

Performance Period: 04/01/02-09/30/05

Assad A. Oberai

Department of Aerospace and Mechanical Engineering

Center for Computational Science
Boston University

Boston, MA 02215

Prepared for
Dr. Luise Couchman

Office of Naval Research
Ballston Center Tower One

800 North Quincy Street

Arlington VA 22217-5660

0

DISTRIBUTION STATE•EIT A
Approved for Public Release

Distribution Unlimited

20051219 0514



REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

16-12-2005 Final April 2002- Sept. 2005

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Numerical Methods for Computing Turbulence-Induced Noise

5b. GRANT NUMBER

00014-02-1-0425

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Oberai, Assad, A.

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

The Trustees of Boston University, Office of Sponsored Programs 881 Commowealth REPORT NUMBER

Avenue Boston MA 02215

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

Office of Naval Resarch Ballston Center Tower One 800 North Quincy Street ONR
Arlington, VA 22217-5660

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for Public Release

13. SUPPLEMENTARY NOTES

14..AtBSTRACT

The prediction of noise generated by hydrodynamic sources is a significant problem of interest to the U.S. Navy. This proposal
describes a program of research aimed at developing and testing computational techniques for formulating and solving structural
acoustics problems driven by hydrodynamic sources.

15. SUBJECT TERMS

hydroacoustics; turbulence modeling; large eddy simulation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF Assad A. Oberai
U U U UU PAGES 19b. TELEPHONE NUMBER (Include area code)

617 353 7381
Standard Form 298 (Rev. 8/98T

Prescribed by ANSI Std. Z39.18



Contents

1 Introduction 1

2 Variational Germano Identity 3
2.1 Introduction . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 3
2.2 The Variational Germano Identity ......................... 4

2.2.1 Extension of the Variational Germano Identity ................. 5
2.3 Application Of The Variational Germano Identity ................... 6
2.4 Linear Advection Diffusion Equation ............................ 8

2.4.1 Problem Description ................................. 8
2.4.2 Variational Germano Identity ............................ 9
2.4.3 Numerical Solution ................................ ... 10

2.5 Incompressible Navier-Stokes Equation .......................... 12
2.5.1 Problem Description ............. . ................... 12
2.5.2 Variational Germano Identity ................. ......... 14
2.5.3 Numerical Solution ........................ .......... 16

2.6 Conclusions ......... .................................... 20

3 Variational Germano Identity Applied to the Spectral Discretization of a
Conservation Law 22
3.1 Introduction ............................................ 22
3.2 Problem Statement . . . .................................. 24
3.3 Fourier-Galerkin Approximation ............................... 25
3.4 Multiscale Viscosity Method .................................. 25
3.5 Consistency Conditions ....................... .. ........ 26
3.6 Evaluation of the Viscosity Parameters .......................... 28
3.7 Numerical Example ............................. ......... .. 28

3.7.1 Comparison ....................................... 29
3.8 Conclusions ......... .................................... 31

4 Variational Germano Identity Applied to Large Eddy Simulation 43
4.1 Introduction .............................. .......... 43
4.2 Incompressible Navier Stokes Equations .......................... 44
4.3 Filtered Form of the Germano identity .......................... .44
4.4 Variational Germano identity ............................. 46

4.4.1 Variational Formulation of LES .......................... 46

i



4.4.2 The variational Germano Identity .......................... 48
4.5 Decay of Homogeneous Isotropic Turbulence ....................... 49
4.6 Numerical Examples ...................................... 53

4.6.1 Re,\ = 90 ....... ......................... ........ 54
4.6.2 Re,, = 716 ........................................ 55
4.6.3 Summary and explanation of numerical results ................. 55

4.7 Conclusions ......... .................................... 57

5 Variational Germano Identity Applied to Computing Hydrodynamic
Noise 64
5.1 Introduction ..................................... 64
5.2 Expression for the Far-Field Acoustic Intensity ................. 64
5.3 Evaluation of LES Models ................................... 66

ii



Chapter 1

Introduction

The prediction of noise generated by hydrodynamic sources is a significant problem of interest
to the U.S. Navy. This proposal describes a program of research aimed at developing and
testing computational techniques for formulating and solving structural acoustics problems
driven by hydrodynamic sources.

The typical parameters associated with the problems of interest to the Navy are low
Mach numbers and high Reynolds numbers. This regime naturally leads to the application
of Lighthill's acoustic analogy to solve the problem [1, 2]. In this approach the original
problem is decomposed into two parts, one that involves the solution of the Navier-Stokes
equations to determine the unsteady fluid variables, and another that involves the solution
of an acoustic problem driven by quadrupole sources whose distribution is determined by the
components of Lighthill's turbulence tensor. This tensor is constructed from the unsteady
flow field computed in the fluid calculation. In our previous work [3,4], we have developed
"a methodology that uses large eddy simulation (LES) to calculate Lighthill's tensor and
"a variational formulation of Lighthill's acoustic analogy to solve the acoustic problem.
The effectiveness of this method was demonstrated in [4], where we calculated the noise
generated by turbulent flow over an airfoil, while fully accounting for its geometry. Previous
studies [5-11] have had to make simplifications to render the problem tractable. In the
same paper, it was found that the computational costs of the overall methodology were
dominated by the turbulent calculation. This meant that better and more efficient LES
models were required to extend the applicability of the proposed methodology to higher

* Reynolds number. With this in mind a parallel effort aimed at developing new LES models
based on the variational multiscale formulation was undertaken (see [12,13]). The proposed
research extends these ideas in new directions.

A significant component of the research is aimed at improving the variational multiscale
formulation of LES [12-14]. This is accomplished by developing a dynamic version of this
method, wherein the eddy viscosity is calculated during the numerical simulation and is not
fixed a-priori. For this purpose the dynamic Smagorinsky model [15] is revisited, and a
variational version of the Germano identity is derived. This is done in the context of an
abstract variational problem in Chapter 2. It is found that this leads to a formulation which
may be used to determine unknown parameters in a generic numerical method.

Thereafter the variational Germano identity is applied to solve problems posed as
conservation laws. The specialization of this identity to account for spectral discretizations



is developed and the effectiveness of this formulation in solving problems with discontinuities
(shocks) is demonstrated. These developments are presented in Chapter 3.

In Chapter 4, the variational Germano identity is applied to the large eddy simulation of
incompressible turbulent flows, and it is demonstrated that it is more accurate and robust
than the filtered counterpart.

Finally in Chapter 5, the performance of this identity in predicting the far-field noise
generated by homogeneous turbulence is assessed. It is found that in conjunction with the
variational multiscale formulation it outperforms the current state of art.

The results of this research have been published in refereed journals in the following
articles [16-19].
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Chapter 2

Variational Germano Identity

2.1 Introduction

Consider the weak form of an abstract (possibly non-linear) partial differential equation,
viz., find u E V, such that

B(w, u) = (w, f W E V. (2.1)

Here B(-,.) V x V --+ R is a semi-linear form that is linear in its first slot, V is the space
of weighting functions and trial solutions, and f E L2 (Q) is the prescribed forcing function.
The Galerkin approximation to the weak form is given by: find uh E Vh, such that

B(wh, uh) = (wh, f), Vwh E Vh, (2.2)

where Vh C V is a finite dimensional subspace.
In several applications the Galerkin method does not yield good numerical solutions.

In such cases, other numerical methods with solutions that are close to an "optimal"
representation of the continuous solution in Vh, are derived (see for example [20,21]). That
is methods with solutions uh,

h ph, V (2.3)

Swhere vh is the optimal representation of u in Vh, and ph : V -- Vh is an appropriate
mapping. Several definitions of ph and hence vh may be considered. For example, in a finite
element context, vh may be the nodal interpolant, or the L2 or H' projection of u on to Vh.

A large class of such numerical methods may be formally expressed as: find uh E Vh, such

that

B(wh, uh) + M(wh, uh, f; h, c) = (wh,f), Vwh E Vh. (2.4)

Here Mh(.,.,.;.,.) : V x V x L 2(Q) x ]R x RPp --+ R is the model term, which is a functional of
the weighting function wh, the trial solution uh, and the forcing function f. It also depends
on the grid or mesh size h, and a vector of parameters c = [cl,... , Cp] E RP. Note that the
solution of (2.4) is different form the Galerkin solution (solution of (2.2)).
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In this manuscript we consider a numerical method (such as the one in (2.4)) with
unknown parameters c, and derive a methodology for determining these dynamically. This
is achieved by requiring the solution of the numerical method to be equal to the optimal
representation of the continuous solution on Vh and its subspaces. The result is an expression
for c in terms of uh, f, the mesh size associated with Vh and its subspaces, and the analog of
the operator ph on each subspace. Similar methods for computing numerical parameters have
been developed by several researchers (see for example [22-25]). However, these methods
typically involve either analytical or numerical solution of a simplified version of the original
or an auxiliary (usually the adjoint) PDE. In contrast to these, the proposed method does
not require such a solution. Instead it requires restrictions of the numerical solution on to
coarse function spaces. These restrictions are easily computed and do not add significantly
to the overall computational cost of the method.

The starting point of our development is the variational counterpart of the Germano
identity. The Germano identity is a popular tool for computing the magnitude of the eddy
viscosity in the large eddy simulation of turbulent flows. It was initially derived for the
filtered Navier-Stokes equations in [15]. In this manuscript we propose a generalization of the
variational form of this identity, and describe how it may be used to design better numerical
methods. We first apply it to the linear advection-diffusion equation to dynamically
evaluate the mesh-dependent diffusivity for the finite element approximation of this equation.
Thereafter we apply it to evaluate the Smagorinsky coefficient in the large eddy simulation
(LES) of the decay of homogeneous isotropic turbulence. In both cases the resulting
numerical method is found to perform well. For the advection-diffusion equation, the results
compare favorably with the Streamline Upwind Petrov-Galerkin (SUPG) method, which
produces nodally exact solutions. For the turbulent flow problem, the results are generally
more accurate than the constant-coefficient and the traditional dynamic Smagorinsky
models. It is remarkable that the same formulation leads to accurate methods for these
two significantly different problems.

The format of this chapter is as follows: In Section 2, we describe the variational
Germano identity and derive its extension. In Section 3, we use this extension to derive
an expression for the unknown parameters in a numerical method, which is the main
result of this chapter. In Section 4, we apply this result to the linear advection diffusion
to derive a non-linear dynamic diffusivity method, and compare the performance of this
method with the streamline-upwind Petrov-Galerkin (SUPG) method. In Section 5 we
apply the same methodology to compute the Smagorinsky coefficient in the LES of the
decay of homogeneous isotropic turbulence in three dimensions, and compare our results
with the constant-coefficient and the traditional dynamic Smagorinsky models. We end with
concluding remarks in Section 6.

2.2 The Variational Germano Identity

In the context of the filtered Navier-Stokes equations the Germano identity is derived in [151.
In this section we apply its variational counterpart to the abstract PDE given by (2.4).

We begin by requiring the solution of the numerical method (uh) to be equal to vh.

4



Recall that vh = Phu, is the optimal representation of uin Vh. Setting uh = vh in (2.4),

M(wh, vh, f; h, c) = - (B(wh, vh) - (wh, f)), VWh E Vh. (2.5)

This equation may be considered as a condition on the model term that is necessary for the
numerical solution to be equal to the optimal representation of the continuous solution (that
is uh = vh). Now consider the finite dimensional subspace Vhl C Vh . Let vhi -= phlu be
the optimal representation of u in Vhl and phi : V+_+ Vhl be the appropriate mapping. We
consider the following numerical method which is obtained by replacing h with hi in (2.4).
Find uhl E Vhi, such that

B(whi, uhl) + M(whUhl, f; hi, c) = (whi, f), Vwhi E Vhl. (2.6)

We assume that the solution of this numerical method is equal to the optimal representation
of u in Vhl. That is, the same functional form of the model that leads to the optimal solution
on Vh, also leads to the optimal solution on Vhi. Thus, requiring uhl = vh, in (2.6)

M(whi,vhl, f;hi,c) =--(B(Whi,vh1) - (wh,f)), Vwhi E Vhl. (2.7)

Subtracting (2.5) from (2.7) we arrive at the variational counterpart of the Germano identity,
viz.

M(Wh, Vhl, f; hi, c) - M(whi, vh, f; h, c) = ,(B(whi, Vhl) - S(whi, Vh

VWhi E Vh.. (2.8)

Note that (2.8) holds for weighting functions chosen from the intersection of the spaces of
weighting functions for (2.5) and (2.7), that is Vh n Vh1 = Vh. Equation (2.8), which may
be interpreted as a consistency condition on model terms at two different scales, involves
only the finite dimensional representations vh and vhi of the exact solution u and not u
itself.
Remark. The model term may be viewed as a sub-grid model by replacing the second term
on the right hand side of (2.5) with B(wh, u). This yields

M(wh vh, f;h,c) = -(B(wh vh)-B(wh, u)), EVh _ V'h. (2.9)

The right-hand side of (2.9) represents the effect of that part of u which is not contained in
Vh.

2.2.1 Extension of the Variational Germano Identity

In some circumstances (for models with more than one parameter) the variational Germano
identity may not yield sufficient relations to determine the parameters of a model. For these
cases we need to generalize (2.8).

Consider a hierarchy of finite dimensional function spaces Vhj C Vhj-l C ... C Vh2 C

Vh, C Vh. For a given space Vhj, j E N(1, J), let vhj = Phiu be the optimal representation

5



of the continuous solution and Phi : V -+ V)h be the appropriate mapping. Following the
procedure described in the previous section, and assuming that the same functional form of
the model yields optimal solutions for the numerical method posed on all subspaces of Vh,
we arrive at the generic Germano identity viz,

M(w ,vj,f; h, c) - M(whi, vh, f; h, c) = -(B(whi, vhi) - B(whj, vh)),

Vwh i E Vhj, j = 1,.-.. ,4.2.10)

Note that for a given j, (2.10) holds for weighting functions chosen from the intersection of
the spaces Vh lVhj = -•Vh.

2.3 Application Of The Variational Germano Identity

In this section we describe how (2.10) may be used to derive an expression for c.
For arbitrary weighting functions the variational Germano identity (2.10) represents a

relation that involves the functions vh, f, vh,... , Vhj, and the parameters h and c. Here

h - {h, h,... ,h}. (2.11)

The dependence on v,... , vhJ may be eliminated by expressing vhi in terms of vh. This
is possible if

phjph = phi, (2.12)

since this implies vhj = phj vh. Assuming Vhi C Vh, it can be verified that (2.12) is satisfied
at least for the following cases:

1. When ph and phi are interpolation operators.

2. When Vh C H' (Q), and ph and Phi are H"(Q)-projections from V to Vh and Vhi
respectively, with n < m.

Using (2.12), (2.10) is reduced to

SM(wh, phivh, f; h,, c) - M(whivh, f;h,c) = -(B(whi,pivh) - B(whJ, v)),

Vwhi E Vhi, j = 1,-. ,J.(2.13)

In this form, for an arbitrary weighting function, the variational Germano identity represents
a relation that involves the functions vh and f, the parameters h and c, and the set of
operators P, given by

p {lph'... IPh}. (2.14)

Let Nhi = dim(Vhi). Then for every j (2.13) represents Nhj relations. Experience with
the Germano identity has shown that these relations should be interpreted in a global sense.
This may be accomplished by either of the following methods.
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Dissipation method This approach involves choosing wh -= vhj = phjvh in (2.13). This
yields

M(phivh, phivh, f; hj, c) - M(phivh, vh, f; h, c) = -- (B(Phivh, phivh) - B(phivh, vh)),

j = 1,.. ,J. (2.15)

Equation (2.15) is motivated by previous work in the context of filtered Navier-Stokes
equations [15]. In that case the model contribution in (2.15) (that is the left hand side
of the equation) represents the difference in the dissipation of the total turbulent kinetic
energy induced by LES models acting at two different scales. For this reason we refer to this
approach as the dissipation method.

Equation (2.15) represents a set of J scalar equations for the P parameters c =

[C1, ... , cp] that involve vh, f, h and P. When J = P, these equations may be solved
to determine the model parameters. Assuming this is feasible the result is a relation of the
form

c = 7r(vh,f;h;P). (2.16)

Least-squares method An alternate approach, which is motivated by the work of Ghosal
et al. [26] and Lilly [27] involves selecting whi as

Whi = Oh,(X) (2.17)

where 0hj, A = 1,..., Nhi are functions that span Vhi. Using (2.17) in (2.13),

M (q5>h ih fh , ) - ( , hf h c (B(;bhi, phjVh) - B( hi, Vh))

A=I,--.,Nhj, j=lI,-..,J.

(2.18)

The equation above represents N =l Nhi, scalar relations. An expression that is
formally identical to (2.16) may be obtained from this equation by finding the parameters c
that minimize the square of the residual of these relations.

* Once an expression for 7r is derived using either the dissipation or the least-squares
method, the numerical method may be written as

B(wh, Uh) + M(wh, Uh, f; h, c) = (wh, f), VWh E Vh (2.19)
c -- r(uh, f;h;P), (2.20)

By construction, this method has one of the following special properties:

1. When the parameters are determined using the dissipation method, a subset of
the conditions that are necessary for the solution of the numerical method on
Vh, vhi,... , Vhj to be equal to the optimal representation of the continuous solution,
are satisfied.

7
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2. When the parameters are determined using the least-squares method, the conditions
that are necessary for the solution of the numerical method on Vh, Vhl,... , V hi to
be equal to the optimal representation of the continuous solution, are satisfied in a
least-squares sense.

The following additional remarks may be made about the numerical method (2.19)-(2.20).
Remarks
1. During a numerical simulation, each quantity that appears in (2.20) is known, hence this
expression closes the numerical method.
2. 7r is typically non-linear in uh, and hence the resulting numerical method is also non-
linear.
3. The fact that 7r depends on P, which in turn depends on the definition of the optimal
solution, indicates that different numerical methods are obtained for different choices of the
optimal solution.
4. Evaluating ir using either the dissipation or the least-squares method, and hence
implementing the proposed numerical method, does not require the analytical solution of
the continuous problem. Thus this method may be used for solving complex non-linear
partial differential equations where such solutions are unavailable.
5. In the development above, for simplicity, we have assumed that c is constant in Q. When
this is not the case a piecewise-constant approximation to c may be used and the procedure
described above repeated on individual subdomains where c is constant.

2.4 Linear Advection Diffusion Equation

In this section we apply the methodology developed in the previous section for solving the
linear advection-diffusion problem. For this equation a model term that yields nodally exact
solutions in one dimension can be derived analytically. Hence the results of (2.19)-(2.20)
may be compared with this "ideal" model.

2.4.1 Problem Description

We consider the advection diffusion equation in Q = (0, 1), with homogeneous Dirichlet
boundary conditions and forcing f. The strong form of the problem is given by

1u -vu,x + au,x = f, x E (0, 1) (2.21)

u(0) = u(1) = 0. (2.22)

where v is the diffusivity, assumed constant in Q, a =_ 1, is the prescribed velocity, and f is
the forcing function given by

f(x)= (x -X) = { < < (2.23)X -- XO, X •> Xo

We have experimented with several values of x0 and have obtained results that are insensitive
to it. As a representative value we choose xO = 1/2.
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An equivalent weak or variational form of (2.21) and (2.22) is given by (2.1), where

B(w, u) = v(w,,, u,,) - a(w,,, u), (2.24)

(w, f) = j wfdx, (2.25)

and V = {vlv E H'(Q), v(O) = v(1) = 0}.

2.4.2 Variational Germano Identity

Preliminaries

Model term The finite dimensional approximation of (2.21)-(2.22) inclusive of a model
is given by (2.4). For the model we choose a residual-based term given by

M(wh, uh, f; h, c) = clhc2(w4, Luh - f)p, (2.26)

where f is the union of all element interiors, h is the element size of the finite element
discretization, and c = {C1 , c 2 } are the parameters that will be determined using (2.15).
Since the number of unknown parameters P = 2, we select the number of subspaces of Vh,

denoted by J = 2 also.

Function spaces To solve (2.4) we use a uniform mesh of linear finite elements. With
this specification the model term (2.26) reduces to

M(wh, uh, f; h,c) = ch C2(w4,, - f). (2.27)

The spaces Vh, V4hl and Vh2 are constructed from shape functions associated with a uniform
mesh of linear finite elements of size h, 2h and 4h respectively. Thus h = {h, 2h, 4h}. It
easily verified that this choice satisfies Vh2 C V"h C V'h.

Operators Since J = 2, the set p = {lphi, ph2 }. The operators ph, phi and ph2 are chosen
to be the nodal interpolation operators at scales h, 2h and 4h respectively. Note that this
choice satisfies (2.12).

Determining 7r

We now specialize (2.15) to the advection-diffusion problem. Using (2.27) in (2.15),
recognizing that B(.,.) is a bilinear form, and that for our choices of Vha and Phi,

(Wh, Vh -f) = (wh, (phjvh),.-- f), Vwhi E Vhi, j 1,2, (2.28)

we arrive at

cihc2 ((hj/h)c2 -1)= F(vh,f;phj), j = 1,2, (2.29)

9



where

F(vh, f; phj) B(Phivh, vh - phjvh) (2.30)((phjVh),x, (phjVh),-f"

Solving (2.29) for cl and c2 yields

= 7(vfhPIhhh}= 2 (hfhP=in(F(vh'f;Ph2) --1)(ln2)-i2.31)
c2 = ir2(vh, f; h; P)Ih=jh,2h,4h_ = i2(vh, f; h; P) -In F(vh, f; ph2)

c, = ir (vh, f; h; P)Ih={h,2h,4h} = h2 -(vh, f; h; P) F(Vhh f;_phi)) (2.32)

2.4.3 Numerical Solution

Nonlinearity The numerical method (2.19)-(2.20) specializes to

B(wh, Uh) + vh(wh u - f) = (wh, f),Vwh E Vh (2.33)
vhh fgh(uhffhh;P

= • 1(uh, f; h; P)h*2(uh'fh;P) (2.34)

where B(., .) is defined in (2.24), and fr and t 2 are given by (2.32) and (2.31). We term
this method the dynamic diffusivity method, since the numerical diffusivity is not determined
a-priori, but is determined based on the solution.

To solve this nonlinear problem we introduce an artificial "time" variable t, and instead
of (2.34) we solve

-- gh(uh, f; h; P) - Vh, (2.35)

with vh(O) = 0. The steady state solution of this equation is the solution to (2.34). We use
the following simple scheme to discretize this equation in time.

Vh(t+ At) =1 + t) + Atlgh(Uh(t), f; h; P)J (2.36)S 1 +At I+ t

where uh(t) is solution to (2.33). This scheme corresponds to a forward Euler step in the
* non-linear term and a backward Euler step in the linear term. We have used the absolute

value of gh in this equation, in order to avoid the scheme from diverging whenever (rarely)
a negative value of gh is encountered. Similar precautions are taking when evaluation eddy
viscosities in turbulence models [15,26]. For the examples shown below we choose At = 3/7.

Results The diffusivity that renders the numerical solution nodally exact is given by

V ah (2.37)

where the non-dimensional parameter 4e is given by

e coth a - -, (2.38)
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and a is the mesh Peclet number. Using this diffusivity in (2.33) leads to the SUPG
method [28].

First, we study the convergence of the dynamic diffusivity vh, obtained by solving (2.33)
and (2.35) to ye. In particular we compare ýh with •, where ýh is given by

yh = h(T) (2.39)
ah/2'

where vh(T) is the converged or the steady-state value of Vh. The results of this comparison
are shown in Figure 2.1 for a e (3.2 x 10-2, 3.2 x 103). For all results h - 1/52. We observe
that the values of ýh and • are in agreement in both the advective and diffusive limits
(a -* oo and a --* 0 respectively). There are some noticeable differences in the diffusive
limit with dynamic diffusivity being slightly larger than the analytical value. However, it is
worth noting that in this limit the numerical diffusivity is much smaller than the molecular
diffusivity (same for every method), which dominates the solution.

Dynamic Diffusivity

100

SUPG
10~'

10`2

10010. 10 .i 10o 10' 102 103 10

Figure 2.1: Variation of the non-dimensional viscosity for SUPG (e) and the dynamic
diffusivity method (ýh) as a function of the mesh Peclet number (a).

In Figures 2.2 through 2.5, we have plotted the Galerkin, the SUPG (which is also the
nodal interpolant of. the exact solution) and the dynamic diffusivity solutions for different
values of mesh Peclet number. Figure 2.2 corresponds to a value of a = 3.2 x 10-2. We
observe that all solutions including the Galerkin solution are very accurate. In Figure 2.3 we
have plotted the solutions corresponding to a = 1.0. We can now observe differences in the
Galerkin solution and other solutions. There is a bump in the Galerkin solution at x = 0.97
which is absent from the SUPG (the nodal interpolant) and the dynamic diffusivity solution.
In Figure 2.4 we have plotted the solutions for a = 3.2 x 10i. This represents the advective
limit. We observe that the Galerkin solution has large spurious oscillations that are absent
from the SUPG and dynamic diffusivity method. In order to compare the dynamic method
with the SUPG method, we have plotted these solutions in Figure 2.5 without the Galerkin
solution. We observe that the solutions are virtually indistinguishable.
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Figure 2.2: Galerkin, SUPG and dynamic diffusivity solutions for a = 3.2 x 10-2.

In Figure 2.6, we present the convergence of the diffusivity of the dynamic method as a
function of iteration number, for different values of Peclet numbers. For all cases we start
with no diffusivity (that is the Galerkin method) and within about 10 iterations converge to
the SUPG method.

2.5 Incompressible Navier-Stokes Equation

In this section we apply the variational Germano identity to the more challenging problem
of solving turbulent flows governed by the incompressible Navier-Stokes equations on grids
for which the mesh size is much larger than the dissipation length scale.

2.5.1 Problem Description

We consider the problem in Q = Q x]T1, T2 [, where Q = [0, 27r]3 is the spatial domain and
JT 1, T2 [ is the time period of interest. The strong form of the problem is given by

£U-- u,t +V'(u®u)+Vp- V 2 u = 0, iniQ (2.40)
SV-U = 0, in Q (.0

In the above equations U = [u, p]T, where u is the fluid velocity field and p is the pressure.
In addition, v is the kinematic viscosity and the symbol ® denotes the outer product of two
vectors. The boundary of 0 is denoted by &9Q. It is comprised of six faces, [j(0), Ij(27r),
j = 1, 2,3, where

rj(c) = {x E aQ I xj = c} (2.41)

It is assumed the solution is periodic, that is

u(x + 27rej,t) = u(x,t), x C rj(o), t E]TI,T 2[ (2.42)
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Figure 2.3: Galerkin, SUPG and dynamic diffusivity solutions for a 1.

where ej is the Cartesian basis vector in the xj direction. The initial, divergence-free velocity
field is given by

u(x, 0) = uO(x). (2.43)

When seeking approximate numerical solutions to the Navier-Stokes equations one may
either (a) develop and approximate a spatial variational formulation of the problem to
arrive at a set of coupled ordinary differential equations and solve these using a standard
time marching scheme, or (b) discretize the space-time domain into slabs, and develop and
approximate a space-time variational formulation using the discontinuous Galerkin method,
leading to a set of coupled algebraic equations. Methods based on approach (a) are commonly
referred to as semi-discrete methods, and those based on approach (b) are referred to as fully
discrete space-time methods. In our work we consider the more commonly used semi-discrete
method. A direct consequence of this choice is that numerical method developed in Section 2
(which is directly applicable to space-time methods) must be modified. These modifications
are described in the following paragraphs.

The weak formulation (in Q) of (4.1), (4.30) and (4.3) is given by (see [29] for example):
Find u(., t) E V, such that

B(w, u) = 0, Vw c V, Vt C]T 1 , T2[, (2.44)

where the semi-linear form B(., .) is defined as

B(w, u) = (w, ut) - (Vw, u ® u) + 2v(VSw, Vsu) + (V . w, V- 2 (V. V- u ® 0 )45)

Note that the pressure and the divergence terms are absent from the definition of the semi-
linear form. This is because the divergence-free constraint for the velocity field is built into
the definition of the function space V,

V={vlv {k kedx; V)*-k ==vk; E If3kI (1 + fk12 ) < o}. (2.46)

kCz3 kEz3
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In the equation above, i'k is the Fourier-coefficient of v, k is the corresponding wave-vector,
and the superscript * denotes the complex-conjugate of a quantity. The terms within the
curly brackets imply that vector fields contained in V# are real-valued, divergence-free andbelong to H1(•2) (the energy and the enstrophy of the flow are finite for t e]T1, T2[). The
periodic boundary conditions are also built into the definition of V.

2.5.2 Variational Germano Identity
Model term The finite dimensional approximation of (4.11) and (4.3), inclusive of amodel, is given by: Find uh(., t) e Vh such that

B(wh, uh) +I-M(wh, uh;h,c) -- 0, Vwh e V]h,vt c]T1 ,T2 [. (2.47)
For the model we choose the Smagorinsky eddy viscosity model [30] given by,

M(wh, uh; h, c) =2(cih)2(VSwh, I suhlVsuh), (2.48)
where h is the grid (or mesh) size, and c1 (t) is the time-dependent viscosity coefficient that* will be determined using the methodology developed in Section 2.For the semi-discrete approximation of the Navier-Stokes equations considered herein,the variational Germano identity may be derived using arguments that are analogous tothose used in Sections 2 and 3. The end result is (2.13), which now holds Vt e]T1, T2 [. Theapplication of the dissipation and the least squares method to this equation results in (2.15)and (2.18) respectively, which now hold Vt E]T1 , T2[. Consequently, these equations maybe used to determine the time-dependent parameters in the model term. In the followingdevelopment, for the Smagorinsky model, we use (2.15) to determine c1 as a function of time.

Function spaces Since the number of unknown parameters is one (P = 1), we select thenumber of subspaces of Vh also to be one (J =1). We use a finite-dimensional Fourier-spectral basis to approximate our solution in Q. Formally, the spaces Vh and V1hl are given

14
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by

Vh = {v oV;Vk 0, Ikl >k (2.49)

Vh { = vEV;vk= 0, IkJl > kh'}, (2.50)

where IkJK - max{Ik1I,Jk 21,Jk 3J}, and kh = ir/h, and kh, = 7r/h, are the cut-off
wavenumbers. In particular, we choose kh = 16, and khl = 8.

Operators Since J = 1, the set P = {lphi}. The operators ph and ph" are chosen to
be the H'(Q) projections of functions in V into Vh and Vhl respectively. Note that these
projections satisfy the following property.

Let u(., t) c V be represented in terms of the infinite series

u(x, t) = Z k(t),ekx, (2.51)
"k

where Uk (t) are the Fourier-coefficients of u. Then phu is given by

ph(Xt) = E & k(t)ikx, (2.52)

kkl0 <kh

and likewise Phlu is given by

Iphou(xt) = E itk(t)e~kx" (2.53)

lklý<khl

In other words, these projections correspond to the sharp-cutoff filters in the wavenumber
space.

15
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Figure 2.6: Variation of vh for the dynamic diffusivity method as a function of iteration
number.

Determining 7r

We now specialize (2.15) to the incompressible Navier-Stokes equation. Using the definition
of the model (2.48) and the semi-linear form (2.45) in (2.15), we have

c l r = (vh,h;Phl)

\/2hV vho, l®Vhl) - (VVhl,Vh®Vh)h•(V ,IVSvh IVSvhl) -h
2(VSvho , f V5 V" V~h),Vt e]T 1,T2 [, (2.54)

where vh = phlvh. In deriving (2.54) we have utilized the fact that the contribution from
terms in B(w, u) that are linear in u is zero due to the specific form of the basis functions
and projection operators ph and phi. We have also made use of the fact that vh and vhl are
divergence free.

2.5.3 Numerical Solution

The proposed numerical method for solving the incompressible Navier-Stokes equations is
given by (2.47) and (2.48). The Smagorinsky parameter that appears in the model is given
by (2.54) with vh and vhil replaced by uh and uhl respectively. That is

C = Uh U &]ToT[, (2.55)
2 (VS ~hl, JVUh hi h)-( • ••®

2IVSuhlIVSuo ) - h2(VSuho, IVSUFlVSUh)' 1T

where u hl = phluh. We refer to the method implied by (2.47), (2.48) and (2.55) as the
variational dynamic Smagorinsky method. These equations represent a closed system of
ODEs which may be integrated in time to yield the velocity field in ]T1 , T2 [.

16



Results To test the performance of the proposed numerical method we generate a well-
resolved benchmark solution on a 2563 mesh. For this solution we use a random initial
condition with an energy spectrum (energy density in wavenumber space) given by E(k) =
(q2/2A)(k"/k5) exp(-2(k/k,) 2), where the initial turbulent kinetic energy, 2- = 2, and the2 2
spectrum is peaked at kp = 3. The same spectrum was used in [31] to study the decay of low
Reynolds number homogeneous isotropic turbulence. The phase of the modes for the initial
velocity field is chosen randomly and each mode satisfies the divergence-free condition. The
solution is allowed to evolve according to the Navier-Stokes equations till a spectra with a
physical k- 51/ 3 range is obtained (see Figure 2.7). This corresponds to t = T, ; 2.2. At
this time the Taylor-microscale Reynolds number is P 90. This state of the flow is chosen

S... ...i "'i ii • '••......... i. . --i-. . ;. .... ... . . ! ..D.. t t = • ,:.:
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Figure 2.7: Energy spectra E(k), for the DNS at initial and final time (T1 &T2).

as an initial condition for all numerical solutions. In addition to the variational dynamic
Smagorinsky method on a 321 grid, the following numerical methods are included in the
comparison.

1. A well resolved Direct Numerical Simulation (DNS) solution on a 256' mesh. This
corresponds to the Fourier-Galerkin method applied to the Navier-Stokes equations
(that is (2.47) with the model term set to zero). The resolution is chosen such that the
largest wavenumber is sufficient to capture the dissipation or the Kolmogorov length
scale. This solution is treated as the benchmark solution. Note that the number
of degrees of freedom in the well resolved DNS is 512 times more than the other
simulations.

2. An under-resolved (coarse) DNS solution on a 32' mesh. This method is also given
by (2.47) with the model term set to zero. However a coarse 321 mesh, on which the
dissipation length scale is not represented, is utilized. This solution represents the
coarse Fourier-Galerkin approximation of the Navier-Stokes equations.

3. A constant coefficient (static) Smagorinsky model on a 32' mesh. This numerical
method is given by (2.47) and (2.48), where the Smagorinsky constant is set to

17



cl = 0.16, a value obtained by assuming an infinite inertial range (see [32]). The
value of the coefficient is not changed during the simulation.

4. The traditional dynamic Smagorinsky model on a 32' mesh. This numerical method is
given by (2.47) and (2.48). In (2.48), the Smagorinsky coefficient is calculated using the
Germano identity [15] applied to the filtered Navier-Stokes equations. The coefficient
is given by

,(Vuh,uhl ®uhl) - (Vuh, uh ® uh) -Vt E]TT 2[. (2.56)
cl= 2hi(VSuh' IVsuhiVSuhl) _ h2 (VSuhl, I VSuhIVSuh)

Note that in the above expression for cl, uh appears in the weighting function slot
of the second term in the numerator and the denominator. Whereas in (2.55), which
is derived from a variational standpoint, uho appears in these slots. In the following
section we will observe that this difference leads to a smaller value for cl when it is
calculated using (2.55).

All the numerical methods described above lead to a set of coupled ODEs. These
equations are advanced in time using a mixed integration scheme in which the exact
integrating factor is used for the viscous term and a third-order Runge-Kutta method is
used for the remaining terms (see for example [33]).

In Figure 2.8, we have plotted the Taylor microscale Reynolds number (Re,) as a function
of time for the benchmark DNS solution. We observe that in the time period of interest (that
is t E]2.2,4.4[), Re, falls from 90 to about 62.

85 . ..... .8 5 .. ...•.... .. ... .. ... .. .. .......... . ............ .. .............. .. . . ............ .

75

7 5 ........ \ .......... .. ..........................................

........... .. . . .-.- . . . . . ... ..... ............. ............. ...... ......

2 2.5 3 3.5 4 4.5 5 5.5t

Figure 2.8: The Taylor microscale Reynolds number (Rex) for the DNS as a function of time.

In Figure 2.9, we have plotted the coefficient cl as a function of time for the static, the
traditional dynamic and the variational dynamic Smagorinsky formulations. We observe
that the coefficient for the static Smagorinsky formulation is the largest. For the traditional
dynamic method the coefficient starts out high but settles to a lower value of 0.14. The
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Figure 2.9: Variation of the Smagorinsky coefficient (cl) as a function of time.

coefficient for the variational dynamic method is the smallest, and settles to a value of about
0.12.

In Figure 2.10, we have plotted the energy spectra for the benchmark DNS and the various
numerical solutions at the final time (T2). From this figure we observe that the coarse DNS
solution is completely incorrect indicating that a model term is necessary to compute a
reasonable approximation of the well-resolved DNS solution. The coarse DNS exhibits a
cusp at large wavenumbers caused by the abrupt truncation of the energy cascade at the
cut-off wavenumber. Further, through the coupling induced by the quadratic term, this
accumulation of energy at high wavenumbers has led to an increased transfer of energy from
the low wavenumbers, which has in turn resulted in an under-prediction of the energy at these
wavenumbers. This error in the coarse DNS solution is rectified by the Smagorinsky model.
However, for the static coefficient case we observe that the model has overcompensated to
some extent: the large dissipation in the fine scales has led to a drop-off in the spectrum at
the cutoff wavenumber, which has in turn caused a net decrease in the transfer of energy from
the coarse scales, leading to a pile-up of energy at the these scales. The traditional dynamic
Smagorinsky formulation, which has a smaller viscosity, is seen to improve these results
somewhat. The most accurate spectrum is achieved by the variational dynamic formulation,
which has the smallest Smagorinsky coefficient.

In Figure 2.11, we have plotted the resolved turbulent kinetic energy in the flow as a
function of time. We observe that with the exception of the coarse DNS solution, all solutions
match the DNS data quite well. In particular, the variational dynamic Smagorinsky and the
constant coefficient Smagorinsky methods are very accurate at initial and intermediate times
respectively.

Finally in Figure 2.12, we have plotted the resolved enstrophy (L2 norm of vorticity)
as a function of time. We observe that the coarse DNS solution severely over-predicts
this quantity, while both the constant coefficient and the traditional dynamic Smagorinsky
solutions under-predict it. The variational dynamic formulation is once again the most
accurate.
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using this approach satisfy certain conditions necessary for the numerical method to yield
optimal solutions over a set of finite dimensional subspaces. We have applied this approach
to calculate the numerical diffusivity required for nodally exact solutions to the advection
diffusion equation in one dimension. We have found that the resulting diffusivity, which
is a non-linear function of the numerical solution, converges to the value obtained using
the SUPG analysis. In addition we have applied the same approach for computing the

Smagorinsky coefficient in the decay of homogeneous isotropic turbulence. In this case we
have found that the resulting model produces results which are generally more accurate than
the constant-coefficient and the traditional dynamic Smagorinsky models.

It is interesting to enumerate the differences between the advection-diffusion and the
turbulence problems that were solved in this study: (1) the former was a linear PDE while

* the latter was a system of non-linear PDEs, (2) the former was posed in one spatial dimension
while the latter was posed in three dimensions, (3) the latter exhibited chaotic solutions while
the former did not, (4) the former was solved using the finite element method, while the
latter was solved using a spectral method. Given these differences it is remarkable that the
same methodology, namely the variational Germano identity, could be employed to design
accurate numerical methods for these two problems. In the future we propose to explore the
application of this identity to other physical systems.
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Chapter 3

Variational Germano Identity Applied
* to the Spectral Discretization of a

Conservation Law

3.1 Introduction

In this chapter we develop a numerical method for the spectral approximation of non-linear
conservation laws. These laws describe a broad range of physical phenomena which include
the dynamics of gasses, the flow of traffic and the propagation of shallow water and nonlinear
acoustic waves. In all these systems we are interested in cases when the physical viscosity
(or diffusivity) is small or zero. In the small viscosity case, the solution to such systems
develops local regions of large spatial and temporal gradients called shocks. The width of a
shock reduces with reducing viscosity, and in the limit of zero viscosity the solution becomes
discontinuous. In fact, in this limit in order to ensure unique solutions, the conservation
law must be supplemented with an entropy production inequality and conditions that relate
jumps in conserved quantities across the shock [34,35].

For small viscosities, the standard Fourier-Galerkin approximation to non-linear
conservation laws becomes unstable if the shock width is smaller than the grid size. For
a large class of problems the computational cost of employing a grid which is fine enough to
resolve a shock is prohibitive and as a result this method finds limited application. Further, in
the limit of zero viscosity, even with sufficient grid refinement, the Fourier-Galerkin solution
does not converge to the unique "physical" solution which satisfies the entropy production
inequality. To overcome these difficulties associated with the Fourier-Galerkin method,
several methods have been proposed. A large proportion of these methods involve appending
to the Fourier-Galerkin formulation a numerical viscosity term (see [36] for example). We
choose to classify different numerical viscosity based methods on the basis of the equations
in which the viscosity appears. To accomplish this, we introduce the concept of the coarse
and the fine scale equations of a numerical approximation as follows.

In a Fourier-Galerkin method, the residual of the original partial differential equation is
weighted by a Fourier mode, integrated over the domain, and the result is set to zero. This
leads to a finite number of ordinary differential equations (ODEs), which may then be solved
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to determine the coefficients in the Fourier expansion of the numerical solution (see [37] for
example). Note that in a Galerkin method the same set of modes is used for the weighting
functions and the trial solution. Given a set of modes that comprises the weighting function
space, we select a scalar k and label modes with wavenumbers k such that Jkl < k as the low
wavenumber or the coarse scale modes, and the remaining modes as the high wavenumber or
the fine scale modes. Then depending on whether an ODE in the numerical approximation
is obtained from a coarse or a fine scale weighting function, we classify it as a coarse or a
fine scale equation.

In several popular methods (such as the vanishing viscosity method [38]) that guarantee
the convergence of the numerical solution to the unique entropy solution, the numerical
viscosity is applied to both the coarse and the fine scale equations. On the other hand, in
the vanishing spectral viscosity method proposed by Tadmor [39], the viscosity is applied
only to the fine scale equations. As a result, this method retains the spectral accuracy of the
coarse or the large scale modes while guaranteeing convergence to the entropy solution. It is
interesting to note that in the context of the large eddy simulation (LES) of incompressible
turbulent flows, the multiscale method of Hughes et al. [12, 14], also involves applying a
numerical viscosity only to the fine scale equations.

Motivated by the class of methods where the viscosity appears only in the fine scale
equations, we propose a method where different numerical viscosities appear in the large and
the small scale equations. In addition, in contrast to the methods described above, these
viscosities are not determined a-priori, instead they are calculated as part of the solution
(dynamically). The equations that are used to determine the viscosities are derived from the
condition that the resulting numerical method be optimal in a certain user-defined sense.
We dub this method the dynamic multiscale viscosity method.

We remark that the equation used to dynamically determine the viscosities, is in effect
the variational counterpart of the Germano identity. This identity has found widespread
use in determining model parameters in the LES of turbulent flows [15]. Recently, we
have demonstrated how it may be used as a tool for determining unknown parameters in a
numerical method aimed at solving an abstract partial differential equation [16]. The work
presented in this chapter is an application of this methodology to the spectral approximation
of non-linear conservation laws. In particular we use it to develop the dynamic multiscale
method for a generic non-linear conservation law and then apply it to the model case of one-
dimensional Burgers equation to study its properties. We find that the dynamic multiscale
method outperforms the vanishing spectral viscosity method.

An outline of the remainder of this chapter is as follows: In Section 2, we present the
equations for a generic non-linear conservation law. In Section 3, we introduce its Fourier-
Galerkin approximation. In Section 4, we introduce the multiscale viscosity method. In
Section 5, we derive the necessary conditions that ensure the multiscale viscosity method is
optimal in a user-defined sense. We employ these conditions in Section 6 to derive expressions
for the multiscale viscosities. This completes the description of the dynamic multiscale
method. In Section 7, we apply the proposed method to the one-dimensional Burgers
equation, and compare the results with the Fourier-Galerkin and the spectral vanishing
viscosity methods. We end with concluding remarks in Section 8.
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3.2 Problem Statement

We represent a generic non-linear conservation law with the following quasi-linear partial
differential equation in the space-time domain Q = 1lx]O, T[, where Q = [0,27r] is the
spatial domain, and ]0, T[ denotes the time period of interest: Given f, G, D and u0 , find
u: Q -* Rn, such that

u,t + G(u), - Du, + f = 0, in Q (3.1)

u(XO) = UO(x), inQ. (3.2)

In the equations above, u,t is the time derivative of u, G : Rn --+ Rn is a non-linear vector
function of u, D :n --* I•I is an n x n positive semi-definite matrix of viscosities given
by D = diag{vl,- .- , v•,}, and u0 is the initial condition. The form of equations (3.1-3.2) is
representative of a large class of physical phenomena that includes the dynamics of gasses,
models of traffic flow, non-lineax water waves, and processes described by Burgers equation.

We consider periodic boundary conditions for u expressed as

u(2ir,t) = u(O,t), t E]0,T[. (3.3)

For any v : Q -+ Rn, we introduce a Fourier-series representation P(a)v, defined as

P(a)v = E iO(k, t)e ikx, (3.4)

O<IklIa

where k is the wavenumber, and ii are the Fourier coefficients given by

b(k7 0 v(xt)e-ikx dx. (3.5)

It is easily verified that the operator P(') commutes with spatial and temporal differentiation
and that

P(a)PU() = P( 3
)]P(a) = P(min(a'1)). (3.6)

We will make use of this property in deriving the consistency conditions for the optimal
numerical method in Section 5.

We are interested in spectral approximation of (3.1-3.2) for small viscosities (IDI <K 1)
and in the limit of vanishing viscosities (ID1 --* 0). For small viscosities the solution to these
equations is known to exhibit sharp variations in space and time called shocks. For D = 0
the solution becomes discontinuous and multivalued. To ensure uniqueness, (3.1-3.2) must
be supplemented with conditions that relate jumps in conserved quantities across a shock
and an entropy production inequality. Another mechanism to arrive at the same physically
relevant solution in this limit is to construct a solution with finite viscosity and then consider
the limit I DI 0.
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3.3 Fourier-Galerkin Approximation

The Fourier-Galerkin approximation of (3.1-3.2) is a function u(N)

u(N) = E il(k,t)eikx (3.7)
O<Ikl:5N

such that
p(N) + G(uN),. - Du'fi + = 0, in Q (3.8)

p(N)u(N)(x, O) = P(N)uo(x), in QA. (3.9)

Noting that p(N) commutes with spatial and temporal differentiation, and that
p(N)U(N) = u(N), (3.8-3.9) may be simplified as

+ (p(N[G(uN))]' Du (N) + p(N)(f = 0, in Q (310)
k I,/

u(N)(x,O) = P(N)uo(x), in Q. (3.11)

Using (3.7) in (3.10-3.11) and invoking the orthogonality of e ikf in 0, we have

UNt + ikG(u(N)) + k2Df,(N) + I = 0, 0 < Ikl < N, in ]0,T[ (3.12)

(N) (k, 0) = fi0(k), 0 < Ikl < N, (3.13)

Note that in (3.12), for notational convenience, we have omitted the explicit dependence of
the Fourier coefficients (the hat terms) on k and t.

Equations (3.10-3.11) and (3.12-3.13) are both expressions of the Fourier-Galerkin
approximation to the original partial differential equation. We wish to solve these equations
in the limit of small or vanishing viscosities when the mesh size denoted by 7r/N is much
larger than the shock width. In this case, the Fourier-Galerkin is known to produce large
spurious oscillations and become unstable. Further, in the limit D = 0, even with mesh
refinement, that is N --- oo, the Fourier-Galerkin solution is known not to converge to
"physical" entropy solution. In order to address these issues, in the following section we
propose a multiscale method based on adding numerical viscosities to the Fourier-Galerkin
approximation.

3.4 Multiscale Viscosity Method

We augment the Fourier-Galerkin method with multiscale viscosities. The choice of using
two distinct viscosities, one for the coarse scale equations, and another for the fine scale
equations is motivated by the earlier work of several researchers [12,14,39,40]. The resulting
method is given by

U N) + (P(N) [G(u(N))]) -(D + ~p@N) + b (ff -p(aN))) [U(NI + 1p(N) f = Q,

in Q, (3.14)
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where a E]0, 1[ is a real number, ]l is the identity operator, and ) = diag{,, P,L} and
b = diag{t 1,-. - , ,} are matrices of numerical viscosities. The initial condition remains
unaltered and is given by (3.11). Note that two distinct numerical viscosities, given by D/N
and D/N, appear in the equations for the coarse and fine scales respectively. This is clearly
seen once equations for the Fourier coefficients of u(N) are evaluated. That is, using (3.7) in
(3.14),

U&N,t + ikG(u(N)) + k2(D + -)fi(N) + f = 0, 0 < Iki • aN, in ]0, T[ (3.15)

iN,t + ikG(u(N)) + k2(D + )fi(N) = 0, aN < Jk[ _ N, in ]0, T[. (3.16)

Since (3.15) is obtained from coarse scale weighting functions (fkj < aN), and (3.16) is
obtained from fine scale weighting functions we term these equations the coarse and fine
scale equations respectively. As is apparent from these equations, the numerical viscosity
that appears in the coarse and fine scale equations is given by D/N and b/N respectively.

While the proposed method is motivated by earlier works (see [12, 14,39,40]), there are
two crucial differences

1. In the aforementioned methods the viscosity is applied only to the fine scale equations.
The viscosity in the coarse scale equations is zero. In our method different but non-zero
viscosities are applied to both the coarse and the fine scale equations.

2. In the aforementioned methods the viscosity is determined a-priori. In our method
the viscosity is determined as a part of the calculation using an optimality argument.
This development is described in the following section.

3.5 Consistency Conditions

We now derive a set of consistency conditions that are utilized in the next section to compute
an explicit expression for evaluating the numerical viscosities. These conditions are motivated
by the Germano identity, which is commonly used to evaluate parameters in subgrid models
for the large eddy simulation of turbulent flows [15].

The main idea which is expressed in Theorem 5.1 below, is the following. We assume that
it is possible to choose the viscosities in (3.14) such that the resulting solution is optimal
in the sense that its Fourier coefficients exactly match the corresponding coefficients of the
continuous solution. Note that other, user-defined definitions of an optimal solution are also
possible. In addition, we assume that the same viscosities also yield optimal results for a
coarser discretization. That is the solution of (3.14) with N replaced by M everywhere,
where M < N, is also optimal in the manner described above. These assumptions lead to a
set of conditions that must be satisfied by the numerical viscosities in order to yield optimal
results. A key feature of these conditions is that they do not involve the continuous solution
u, and are expressed entirely in terms of the numerical' solution u'. Hence they may be
utilized with relative ease to determine the numerical viscosities.
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Theorem 5.1: Let u(N) and u(M) be solutions of the multiscale viscosity method with
modes up to N and M respectively, with M < N. If

U(N) = IP(N)u (3.17)
u(M) = P(M)u (3.18)

where u is the solution of the continuous problem, then

(I -p(oxM) p(N) + ( _p(aM) I _p(aN) [(o)

M - + D(-M gN ))[(]UU) 'xx]

(P(M)[G(P(M)U(N)) - G(u(N))]),x ,in Q.19)

Proof: u(M) satisfies (3.14) with N replaced by M everywhere. Further, from (3.18)

U(M) = P(M)U
= P(M)P(N)u (from (3.6), and since M < N)

= p(M)u(N) (from (3.17)). (3.20)

Using (3.20) in (3.14) written with N replaced by M, and rearranging terms so as to retain
only the model term on the left-hand side, we arrive at

DaM+D - P(akM))) [(lp(M)U(N)) '] = p(M)u(N) + (P(M)[G(p(M)U(N))]

-D(p(M)u(N)),x. + p(M)f, in Q.(3.21)

By applying p(M) to (3.14), assuming that p(M) and spatial differentiation commute,
using property (3.17), and rearranging terms so as to retain only the model term on the left
hand side, we conclude that

(Dp(aN) + b(II -PN))) [(IJ(M) U(N)) ] -= P(M)uN) + (1VM)[GU(N))])

_DP(M)u(N) + p(M)f in Q. (3.22)

Subtracting (3.22) from (3.21) we have the desired result (viz. (3.19)) U
Remark: The Fourier representation of (3.19) is given by

( N)(iL(N)) ,0 < kl < aM

- 2_ )((N)) ,aM <_ kl <_ ik (G(p(M)u(N)) - G(u(N))) in ]0, T[(3.23)

( D _DN)(,&(N)) P,!ý <_kl < M
I _•II•M

where

/3 = min(aN, M). (3.24)
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3.6 Evaluation of the Viscosity Parameters

Equation (3.19) (or (3.23)) represents as many relations as there are modes for which
Jkl < M. We wish to evaluate only the 2n parameters that appear in D and D using
these relations. One mechanism of reducing (3.19) to 2n equations is to equate the L 2 inner
product of its residual with the linearly independent functions

&M) N) j=1,... ,n (3.25)

and

"(I_ p(M))IN) = 1,... n (3.26)

to zero. This procedure leads to 2n scalar equations that are most conveniently expressed
in terms of the Fourier coefficients of u(N). For j = 1, -. , n they are given by

- Lj) E k 21-IN, 12 = i(N)*ik (aj[p(M)U(N)I j iuNI (3.27)
O<_kj<c•M O<IkI<aM

aM<IkI<_0

(L- L) 21 -2I~N) 2 = (jN)* ik ((j[p(M)U(N)] - 5~())( 3 .28 )
O•<Ikl_<M aM <Ikl<_M

where the repeated j indices do not imply a summation. These expressions for evaluating
the viscosity parameters are functions of the solution itself. Thus the closed system of
equations (3.14), (3.11) and (3.27-3.28) comprises a numerical method with non-linear (in
UN), multiscale viscosities. In implementing this method the viscosities are evaluated based
on the solution obtained from the previous time-step. However once the numerical viscosity
is determined this term is treated implicitly.

3.7 Numerical Example

As an example we apply the proposed method to Burgers equation in one dimension. In this
case, in (3.1-3.2), n = 1, f = 0, G(u) = u 2 /2, D = vi = 5 x 10 5 , and u0 = - sinx.

The solution to this problem evolves in two distinct phases. In the first phase (t < 7r/2),
the smooth sine curve steepens. In wavenumber space, this corresponds to transfer of energy
from the k = 1 mode to higher wavenumbers. This phase culminates in the formation of a
shock (or an inverted N-wave) at t : 7r, whose approximate width is 1 = 1.6 x 10-4 units.
All the dissipation in the system is concentrated near the shock. In the'wavenumber space,
the formation of the shock corresponds to a 1/k spectrum that extends to the dissipation
wavenumber, where it steepens. In the second phase, the magnitude of the N-wave reduces
as 1/(1 + t) as the strength of the shock weakens. In wavenumber space, this corresponds
to the lowering of the entire spectra at the rate of 1/t. These stages of the solution are
presented in Figures 3.1 and 3.2, where we have shown a well-resolved numerical solution of
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the problem. Note that E(k) I- k I represents the magnitude of the Fourier coefficients of
the solution.

In order to asses the performance of the proposed method we consider the following
numerical solutions

1. A Fourier-Galerkin solution obtained by solving (3.10-3.11) or (3.12-3.13) on a fine grid
in which the shock is resolved. Following terminology used in turbulence modeling we
refer to this benchmark solution as the direct numerical solution (DNS). The number
of modes used for computing the DNS solution is N = 65,536. This corresponds to a
mesh size h = 4.79 x 10-, which is smaller than the shock width 1 = 1.6 x 10-4. In
Figures 3.1 and 3.2 we have plotted this solution in physical and wavenumber spaces
at various instances during the interval ]0, 5[.

2. A Fourier-Galerkin solution obtained by solving (3.10-3.11) or (3.12-3.13) on a coarse
grid with N = 64. In this case the finest resolved scale (h = 4.9 x 10-2) is much coarser
than the scale at which dissipation occurs (1 = 1.6 x 10-4).

3. A vanishing spectral viscosity solution on a coarse grid with N = 64. This method is
represented by (3.14), where D = 01 = 0, and b is non-zero. In particular we choose
a = 1/2 and D = i1 = 0.25a. This choice for iq is based on the guideline provided
in [39].

4. A dynamic multiscale viscosity solution on a coarse grid with N = 64. This method
is given by (3.14), where a = 1/2 and the viscosity coefficients are determined using
(3.27-3.28). In calculating these coefficients the solution from the previous time-step
is used.

3.7.1 Comparison

The viscosity parameters of the dynamic multiscale method are chosen such that the method
satisfies conditions that are necessary to ensure that the resulting numerical solution has the
same Fourier coefficients as the continuous solution. This stipulation may be interpreted
as a criterion used to design the numerical method. In the following comparison we assess
how close the method comes to achieving this criterion. We also assess its performance in
relation to other methods.

In Figures 3.3-3.6, we have plotted E(k) for the three numerical methods and the
truncated DNS solution at four distinct times. The DNS serves as a benchmark solution. At
t = 0.5 we observe that there is little difference in the numerical methods and the DNS. At
t = 1.5, when the shock is about to form differences appear. A significant pile-up of energy
near the cut-off wavenumber is observed in the coarse Fourier-Galerkin solution. For the
vanishing spectral viscosity solution, this pile-up is reduced. However the solution is seen to
oscillate about the DNS at wavenumbers close to the separation between the coarse and fine
scales (k = 32). The multiscale solution has much smaller oscillations at these wavenumbers
and only slightly underestimates the spectrum at higher wavenumbers. At time t = 2, we
observe that the pile-up at high wavenumbers in the Fourier-Galerkin solution has polluted
the results at lower wavenumbers. The vanishing spectral viscosity solution continues to be
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accurate at the lower wavenumbers, however the oscillations close to k = 32 appear to have
increased. The dynamic multiscale viscosity solution is accurate at the lower wavenumbers.
The oscillations near k = 32 persist, however they are less pronounced than those for the
vanishing spectral viscosity solution. At t = 5 we observe that Galerkin solution is completely
inaccurate, the oscillations in the vanishing spectral viscosity solution have increased and
propagated to lower wavenumbers, where as the dynamic multiscale solution has retained
its accuracy.

In Figure 3.7, we have plotted the viscosity parameters P1 /N and z1ý/N for the vanishing
spectral viscosity method and the dynamic multiscale method as a function of time. The
coarse scale parameter for the vanishing spectral viscosity method is zero and is not shown,
whereas the fine scale parameter which is non-zero and constant is shown. For the dynamic
multiscale method we observe that both the coarse and fine scale parameters are zero till
t ; 1. This represents the time it takes for the energy to spill out to the wavenumbers near
the cutoff wavenumber. Thus the numerical method (correctly) imposes no viscosity till this
time. Thereafter, the fine scale parameter is seen to rise, and after a while the coarse scale
parameter follows suite. A couple of observations are noteworthy: 1) Unlike the vanishing
spectral viscosity method, the viscosity in the coarse scales in the dynamic multiscale method
is not zero, thus the method is qualitatively different; 2) The viscosity in the coarse and the
fine scales is active for different periods of time, and also has different values. In particular,
the fine scale viscosity is about 5/3 of the coarse scale value.

Next we compare the accuracy with which the numerical methods predict the decay of
kinetic energy with time. We define the relative error in the resolved kinetic energy as follows

Eke(t) (Z:k•_5 (6(64)) - EZgk_64 (L)2) (3.29)(z l:6 L~)2)

In Figure 3.8 we have plotted Eke(t) for all the numerical methods. We observe that at
t z 1, that is when the spectra begins to spill beyond the numerical cut-off wavenumber,
the Fourier-Galerkin solution overestimates the kinetic energy. By t ý- 2.5 its kinetic
energy is about two times the actual value. Both the vanishing spectral viscosity and the
dynamic multiscale methods are much more accurate. In Figure 3.9 we have compared the
performance of these two methods. We observe that the vanishing spectral viscosity solution
overestimates the kinetic energy and that the error is seen to increase with time. At t = 5 the
total error is about 2.7%. The multiscale solution underestimates the kinetic energy however
the error is less (about 0.2% at t = 5) and remarkably it does not appear to increase with
time.

One of the attractive features of the vanishing spectral viscosity method is that in the limit
v --+ 0, it converges to the unique solution that satisfies the entropy production inequality,
while retaining spectral accuracy in the coarse modes. This leads us to consider that while
the dynamic multiscale method may be more accurate in predicting quantities such as the
overall spectrum and the resolved kinetic energy, the vanishing spectral viscosity method
may be more accurate in capturing the evolution of the coarse modes since it imposes no
additional viscosity on these modes. In order to verify this in Figure 3.10, we have plotted
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the error in the k = 1 mode, scaled by the exact value, as a function of time. That is

'E(t) = iL(64) (1, t) - it(1,t) (3.30)IL,(l, t)l 3.0

We consider the DNS solution to be the exact value. We observe that at t • 7r the error in
the coarse Fourier-Galerkin solution rises steeply, whereas the error in the other two methods
is smaller. In Figure 3.11, we exclude the Fourier-Galerkin solution. We observe that error
the vanishing spectral viscosity solution rises steadily beyond t p 1. At t = 5 the error is
about 1%. The error in the dynamic multiscale method is much smaller and appears not
to increase with time. At t = 5 it is about 0.04%. We have observed similar behavior for
other coarse modes (k = 1,... , 10). Thus contrary to what might be expected, we observe
that dynamic method (with a non-zero viscosity in the coarse modes) is more accurate than
the vanishing spectral viscosity method in predicting the evolution of the coarse modes. We
attribute this observation to the hypothesis that the ideal model, which would replicate the
effects of the missing scales on the retained scales exactly, may possess a non-zero viscosity at
small wavenumbers. We are presently verifying this hypothesis analytically and numerically.

3.8 Conclusions

We have proposed a new dynamic multiscale viscosity method for the spectral approximation
of conservation laws in the limit of small or vanishing viscosities. Within this method
the numerical approximation is split into coarse and fine scales, and likewise the projected
spectral equations are also split into coarse and fine scale equations. Thereafter different
numerical viscosities are applied in the coarse and fine scale equations. These viscosities are
determined using a condition that must be satisfied if the resulting numerical solution is to
be optimal in a user-defined sense.

We have applied this method to the one-dimensional Burgers equation. We have
compared the resulting solution with the Fourier-Galerkin solution and the vanishing spectral
viscosity solution computed using the same number of modes. As a benchmark we have used
a well-resolved Fourier-Galerkin solution. In all comparisons we have found that the dynamic
multiscale solution is the most accurate. In addition we have observed that the relative errors
in this solution appear not to grow in time.
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Figure 3.1: Well resolved numerical solution (DNS) at

t 0.5, 1.0, 1.5, 2.0, 2.5,3.0,3.5, 4.0,4.5 and 5.0 (arrow indicates increasing time).
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Figure 3.2: E(k) for the well resolved numerical solution (DNS) at t

0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 (arrow indicates increasing time).
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Figure 3.3: E(K) for the solution of the numerical methods and the DNS at t = 0.5.
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Figure 3.4: E(k) for the solution of the numerical methods and the DNS at t =1.5.
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Figure 3.5: E(k) for the solution of the numerical methods and the DNS at t = 2.0.
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Figure 3.6: E(k) for the solution of the numerical methods and the DNS at t 5.0.
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Figure 3.7: Numerical viscosities for the spectral vanishing viscosity method and the dynamic
multiscale method as a function of time.
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Figure 3.9: Scaled error in the resolved kinetic energy of the spectral vanishing viscosity
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Chapter 4

Variational Germano Identity Applied
to Large Eddy Simulation

4.1 Introduction

The typical formalism for performing large eddy simulation (LES) of turbulent flows involves
spatially filtering the strong form of the Navier-Stokes equations. The width of the filter is
chosen in accordance with the resolution of the computational grid on which the numerical
solution is sought. The filtering operation yields a system of equations for the filtered
variables in which certain terms that involve the unfiltered variables appear. These terms
are replaced by models, which are functionals of the filtered variables only, and a closed
system for the filtered variables is obtained.

In [14], a different formalism for performing LES was introduced. In this new approach,
instead of spatially filtering the strong form of the Navier-Stokes equations, a weak or a
variational form was used as a starting point. It was recognized that the approximation of
the weak form by the Galerkin method involved approximating infinite-dimensional function
spaces by their finite-dimensional counterparts. It was argued that for typical turbulent flows,
which tend to have a large range of energetic structures of different sizes, finite dimensional
spaces could not faithfully represent all the features of the exact solution. In the few select
cases where this would be feasible, the Galerkin solution would correspond to the direct
numerical simulation of the problem. On the other hand, in most cases of practical interest,
LES models that represent the effect of the missing scales will be required. This formalism
was then used to develop a multiscale model (in reality, a two-scale model) for the resolved
scales. This model consisted of a Smagorinsky-type term constructed from the resolved,
fine-scale velocity components and applied to the fine-scale equations and no model in the
coarse scale equations. Several applications of this model with encouraging results have now
been reported (see for example [12,13,41]).

While the variational formulation of LES has lead to encouraging results, there is one
aspect of this formulation that is still missing. This is the development of dynamic variational
LES models. In the context of filter-based LES modeling, dynamic LES models rely on the
Germano identity to evaluate model parameters as part of the simulation (dynamically) [15].
Dynamic LES models have been particularly successful in modeling flows where the statistics
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of turbulence vary in space and time, such as flows with intermittent, transitional or decaying
turbulence and flows with boundary layers. In this manuscript, we derive the variational
counterpart of the Germano identity and demonstrate how it may be used to determine LES
model parameters in a variational context.

Our derivation of the variational counterpart of the Germano identity is similar to its
derivation in the filtered case. There are however important differences in the final result.
These differences emanate from differences in the definition of an ideal LES model in the
variational and the filter-based formulations and are highlighted in our development. In fact,
we have discovered that the variational formulation of the Germano identity has applications
beyond the realm of large eddy simulation. In [16] we have demonstrated how it may be used
to determine parameters of a generic numerical method. So far in addition to its application
to turbulence (described in this chapter), we have applied it to the determine parameters in
a residual-based finite element method solution of the linear advection-diffusion problem [16]
and to determine the multiscale viscosity parameters in the spectral approximation of Burgers
equation [17].

The layout of the remainder of this chapter is as follows: In the following section we
introduce the incompressible Navier Stokes equations. In Section 3, we review the filter-
based Germano identity. Thereafter in Section 4, we introduced the variational formulation
of LES and also derive the variational counterpart of the Germano identity. In Section 5, we
apply it to the specific problem of determining the Smagorinsky parameter in the spectral
approximation of the decay of homogeneous isotropic turbulence. In Section 6, we present
numerical results and end with conclusions in Section 7.

4.2 Incompressible Navier Stokes Equations

We consider the motion of an incompressible fluid in Q = Q x]TI, T2[, where Q is the spatial
domain and IT1 , T2[ is the time period of interest. The strong form of the problem is given
by

u,t+V.(u®u)+Vp-_vV2u = f, inQ (4.1)

V-u = 0, inQ. (4.2)

In the above equations U = [u, pjT, where u is the fluid velocity field and p is the pressure.
* In addition, v is the kinematic viscosity and the symbol ® denotes the outer product of two

vectors. The boundary of 9 is denoted by OQŽ. For simplicity the boundary condition on U
is assumed to be either periodic or homogeneous. The initial, divergence-free velocity field
is given by

u(x, O) = Uo(X). (4.3)

4.3 Filtered Form of the Germano identity

In this section we provide a summary of the derivation the filtered form of the Germano
identity (for details see [15]). This will be contrasted with the its variational counterpart in
the following section.
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We apply a spatial filter to (4.1) and (4.2) to arrive at

(lFu),t + V -F'(u 9 u) + V(Fhp) - VV 2(Fhu) = Fhf, in Q (4.4)

V. Fhu = 0, in Q (4.5)

where Fhu is the filtered version of u and Fh is a filter of width h and we have assumed
that filtering and spatial differentiation commute. Note that (4.4) and (4.5) are not closed
in Fhu as (4.4) still involves the unfiltered velocity u in the quadratic term. Thus (4.4) may
be replaced by

(Fhu),t + V. (Fhu ® F hu) + V(Fhp) - VV 2 (Fhu) - V" m(Fhu; h, c) = Fhf, in q4.6)

where m(Fhu; h, c) is a model term that depends only on the filtered velocity field Fhu (and
not u), the filter width h and a vector of parameters c. For a fixed choice of c, (4.6) and
(4.5) represent a closed system in Fhu and Fhp.

From (4.6) and (4.4) we conclude that the ideal model term is given by

m(Fhu; h, c) = (Fhu) ® (Fhu) - Fh(u ® U) in Q, (4.7)

as this choice allows the filtered velocity and pressure fields [F hU, Fhp] to be the solution of
(4.6) and (4.5).

To derive the filtered form of the Germano identity we consider a coarser spatial filter
FH, with H > h. Using the argument made in the previous paragraph, we conclude that at
this scale the ideal model is given by

m(FHu; H, c) = (FHu) ® (FHu) - FH(u ® u) in Q. (4.8)

Note that we have assumed that the functional dependence of the model on the filtered
solution and the filter width as well as the parameters c is unchanged. By subtracting (4.7)
filtered at the H scale from (4.8), and assuming that FH = FHFh, we arrive at the Germano
identity, viz,

m(FHu; H, c) - FH (m(Fhu; h, c)) = (FHU) ® (FHU) - FH((Fhu) ® (FhU)) in Q(4.9)

This expression only involves the filtered velocity fields and does not contain any unfiltered
quantity. It was first introduced in [15] and since then has found wide application in
determining parameters (denoted by c in our case) in LES models. Note that strictly
speaking this relation is valid only for the exact filtered field, which is also unknown during
a numerical simulation. However, in typical applications the numerical approximation of the
filtered field is used in this relation.

The derivation of the Germano identity described above is simplified by making the
assumptions that spatial differentiation and filtering operations commute and that ]FHFh

FH. Neither of these assumptions are typically valid for flows that are inhomogeneous
(wall bounded flows for example). For such flows, the assumption of commutativity of
differentiation and filtering introduces errors in the modeled equations which can be quite
large (see for example [42] and [43]). We are not aware of a filtered form of the Germano
identity that accounts for these errors. However filters that minimize these errors have been
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proposed (see for example [44]). The assumption FgFh = FH may be avoided altogether by
utilizing the composite filter FHFh in (4.8) instead FH. Note that the width of this composite
filter (denoted by /) may not equal to H and is determined separately. In this case, (4.9)
is replaced by

m(FHFhU; fl, C) -- FH(m(Fhu; h, c)) = (IFHFhu) ® (FHFhu)

-FH((Fhu) ® (Fhu)) in Q. (4.10)

4.4 Variational Germano identity

We now derive the variational form of the Germano identity. Note that even though our
derivation mimics the derivation of the filtered version described in the previous section, it
is not restricted to homogeneous flows or uniform meshes. At every step we will point out
the salient differences between the filtered and the variational approaches.

4.4.1 Variational Formulation of LES

We begin with a weak or a variational formulation of the Navier Stokes equations (see [29]
for example) given by: Find U(.,t) = [Uu(.,t),p(.,t)]T E V, such that

B(W,U) = (W,F), VW= [w,q]T E V,Vt E]T 1 ,T 2[, (4.11)

where the semi-linear form B(., .) and is defined as

B(W, U) = (w, u,t) - (Vw, u ® u) + (w, Vp) + 2v(Vsw, Vsu) - (Vq, u), (4.12)

and where

(W,F) = (w, f). (4.13)

In the equations above (-,.) is used to denote the L 2 inner product in Q and VSu -

½(Vu + VUT).
The infinite dimensional function space V is defined as

V = {V = [v,r]TIv E Hl(F);r E L 2 (Q) },(4.14)
where H1 (Q2) denotes the Sobolev space of vector-valued functions that are square-integrable
and whose derivatives are also square-integrable. This implies that the energy and the
enstrophy of the weak solutions remain finite. Also L2(Q) denotes the space of scalar
functions that are squaxe-integrable. In addition, we assume that the boundary conditions
(though not explicitly stated) are built into the definition of V.

Let Vh C V be a finite dimensional subspace. The Galerkin method when applied to
(4.11) yields the following equation for the approximate solution Uh. Find Uh(., t) E Vh,

such that

B(Wh, Uh) = (Wh, F), VWh E Vh ,Vt E]T 1 ,T 2[. (4.15)

Remarks
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1. Since Vh is a subspace of V, (4.11) implies that the exact solution U satisfies

B(Wh, U) = (Wh, F), TVWh E Vh,Vt E]T1,T 2[. (4.16)

2. The Galerkin solution essentially corresponds to a Direct Numerical Simulation (DNS)
solution of the original problem. If the space Vh is incapable of representing the large
inertial scales of motion as well as the fine dissipative scales, then this solution is
inaccurate. It may be improved upon by adding a model term to the terms that
appear in the Galerkin approximation.

The addition of a model term to the Galerkin approximation leads to the following
variational equation : Find Uh(., t) E Vh, such that

B(Wh, Uh) + M(Wh, Uh;h,c) = (Wh, F), VWh E Vh, Vt E]T1,T 2[. (4.17)

In (4.17), M(Wh, Uh; h, c) is the model term that is linear in Wh and non-linear in Uh. It
also depends on the mesh size h and a vector of parameters c. The equation above is the
variational counterpart of (4.6). Also note that due to the presence of the model term, the
solution of (4.17) and the Galerkin solution are distinct.

We now introduce the concept of an optimal solution in the space Vh. For this we define
a restriction operator ph : V -4 Vh, such that PhU E •Vh is the optimal representation of U
in Vh . For example, phU may be the nodal interpolant or a suitable projection (L 2 or H' in
our case) of U in Vh, in which case ph will be the interpolation or the projection operator,
respectively. We would like to select our model term in (4.17) such that the solution Uh is
optimal. Thus requiring Uh = phu in (4.17) we have

M(Wh, phU;h,c) = (Wh, F) - B(Wh,IphU), VWh E Vh",Vt E]T1,T 2[. (4.18)

Using (4.16) in (4.18) we arrive at
M(WhPU;h,c) = B(Wh, U) - B(Wh, phU), VWh C Vh,Vt E]T1,T 2 [. (4.19)

This equation defines the model required to generate the optimal solution. By comparing
the definition of the ideal model in the variational context (4.19) with its counterpart in the
filtered approach (4.7) we find:

1. In the filtered case only the non-linear terms in the Navier Stokes equations contribute
to the definition of the ideal model. In the variational case every term in the semi-linear
form contributes.

2. In the filtered case it is assumed that for the ideal model, (4.7) is satisfied pointwise.
Thus the residual of (4.7) when multiplied with any weighting function and integrated
over • is equal to zero. In contrast to this (4.19) holds only for weighting functions
contained in Vh . Thus the constraint on the model term in the variational case is
weaker. In particular, in the variational case the effect of the model on weighting
functions outside of Vh is irrelevant.

3. In the filtered case the model term is a tensor. In the variational case it appears in
the weak form just as a vector would appear.

These differences in the definition of the ideal model in the variational and filtered
approaches are important and will lead to different forms of the Germano identity.
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4.4.2 The variational Germano Identity

Next we consider another function space VH such that VH C Vh C V. We also define a
restriction operator PH such that PH : V -- , VH and PHU E VH is the optimal representation
of U in VH. We assume that the operators ph and pH are related and hence the same form
of the model term yields optimal solutions in Vh and VH. The finite dimensional, modeled
variational equation for this space is given by: Find UH(., t) E VH, such that

B(WH, uH) + M(WH, UH;H,c) = (WH, F), VWH E VH, Vt EIT,,T 2 [, (4.20)

where the same vector of parameters appears in (4.20) and (4.17). Hence the model that
yields the optimal solution UH = PHU, satisfies

M(WH, PHU;H,c) = B(WH, U) - B(WH, PHU), VWH E VH, Vt E]T1,T 2[. (4.21)

Returning to (4.19), we note that it holds for all Wh E Vh, and hence is also valid for all
WH E VH. Thus we have

M(WH,phU;h,c) = B(WH, U) - B(WH,phU), VWH E VH,Vt E]T 1 ,T2 [. (4.22)

Subtracting (4.22) from (4.21) we arrive at

M(WHIpHU; H, c) _ M(WH, phU; h, c) = B(WH, phU) - B(WH, PHU),

VWH E VH,Vt E]T1 ,T2 [. (4.23)

In addition if the restriction operators are such that

PH = pHph (4.24)

then PHU = pH(phU) and (4.23) reduces to

M(WH, pH(phU);H,c) - M(WH, phU; h, c) = B(WH, phU) - B(WH, pH(phU)),

VWH E VH,Vt E]T,,T 2 [. (4.25)

Equation (4.25) is the variational counterpart of the Germano identity. It involves only the
optimal solution phU in the space Vh. It is easy to verify that the condition (4.24) holds for
several restriction operators including L 2 or H1 projectors and interpolation operators.

At this stage it is instructive to compare this equation with its filtered counterpart (4.9).

1. In the filtered case only the non-linear terms contribute to the right hand side of the
Germano identity. In the variational case every term contributes.

2. In the filtered case it is assumed that the Germano identity is satisfied pointwise, thus
when the residual of (4.9) is multiplied by any weighting function and integrated over
Q, the result is zero. In contrast to this (4.19) holds only for weighting functions
contained in VH, indicating that there is less usable information in the variational
Germano identity. This is direct consequence of the fact that fewer constraints are
placed on the model term in the variational approach than in the filtered approach.
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3. In the filtered case the Germano identity is a tensor relation. In the variational case it
is a weak form of a vector equation. It this aspect the Variational Germano identity is
closer to the vector level identity studied in [45].

It is easy to see that the differences described above can be traced back to differences in
the definition of the ideal model term in the variational and filtered cases.

While utilizing this identity in a numerical method we will replace phU with the numerical
solution Uh. In that case the modeled system is given by (4.17) and

M(WH,pHUh; H, c) - M(WH, Uh; h, c) = B(WH, Uh) - B(WH, pHUh),

VWg gVH,Vt E]T 1,T 2[. (4.26)

The equation above may then be used to determine the parameters c in the model term.
This modeled system, that is (4.17) and (4.26), has the following special property: If (4.24)
holds, then it permits as its solution the optimal solutions phU and PHU on the spaces Vh

and VH respectively.
Equation (4.26) represents as many equations as the dimension of VH. Very often the

number of parameters to be determined (that is the number of components of c) is much
smaller than this number. Motivated by what is done in the traditional dynamic models, we
propose the following methods to reduce the dimension of these equations.

Dissipation method This method is motivated by the approach described in [15] for the
filter-based Germano identity. It involves setting WH = pHUh in (4.26) to arrive at

M(pHUh, pHUh; H, c) - M(PHUh, Uh; h, c) = B(pHUh, Uh) - B(pHUh,PHuh),

Vt E]T 1, T2[. (4.27)

The equation above represents a scalar relation that may be used to determine a single
parameter in the model.

Least squares method This method is based on the approach developed in [27] for the
filter-based Germano identity. In this case we set WH = OA, A = 1,--. , dim(Vh), to arrive
at

M(OA, pHUh; H, c) - M(OA, Uh; h, c) = B(OA, Uh) - B(OA, pHUh),

A = 1,..- dim(Vh),Vt E]T 1,T2 [(4.28)

Thereafter we evaluate the c that minimizes the sum of the square of the residual of (4.28)
for each A.

4.5 Decay of Homogeneous Isotropic Turbulence

In this section we apply the variational Germano identity to calculate the time-dependent
viscosity parameter for the Smagorinsky model during the decay of homogeneous isotropic
turbulence.
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The strong form of the problem is given by (4.1) & (4.3), where Q =]0, L[I and its
boundary comprises of six faces, Fj(0), Fj(L), j = 1, 2,3, where

Pj(c) = {x E OiQ Ixj = cl (4.29)

It is assumed the boundary conditions are periodic, that is

u(x+Lej,t) = u(x,t), x E Fj(0), t E]T 1,T 2[ (4.30)

where ej is the Cartesian basis vector in the xj direction.
The equivalent weak form is given by (4.11). We solve this problem using a Fourier-

spectral discretization. The space of weak solutions and weighting functions, V, is given
by

V={V V= V'keikx;V * k;
(Lk/2ir)EZ3

1: Ik12(l + Ik 2) < oo; Iýkl 2 < oo}. (4.31)
(Lk/2ir)EZ3 (Lk/2ir)EZ3

In the equation above, Vk are the Fourier-coefficients of V for a given wave-vector k, the
superscript * denotes the complex-conjugate of a quantity and for a vector s, Isl =_ A/-"s.
The terms within the curly brackets imply that velocity fields contained in V are real-valued
and belong to H'(Q) (the energy and the enstrophy of the flow are finite for t E]T 1, T2[),
and that the pressure is real-valued and square integrable. Note that the periodic boundary
conditions are also built into the definition of V.

The modeled system of equations is given by (4.17), where the finite dimensional space
is given by

Vh = {V E V;;V¢k =O,Ikl > kh} (4.32)

and the model term, which represents the Smagorinsky eddy viscosity model [30], is given
by

M(Wh, Uh; h, c) = 2(cih) 2 (VSwh, IVSu"IVSuh) (4.33)

Note that in (4.32), Jkj = vk/T • k. The unknown parameter cl in the Smagorinsky model is
to be determined using the variational Germano identity. It is assumed that cl is independent
of the spatial coordinate x, and varies only in time. We consider the use of the dissipation
method (4.27) and the least squares method (4.28) in determining this parameter. In order to
utilize these relations we first define the space VH and the restriction operator PH. Following
(4.32) we have

VH {VEVJ;k=O, Ikj>k H}, (4.34)

where H > h and kH < kh. We select PH to be the L2 projector of V into VH. Thus PHV,
where V E V, is given by

(WH, pHV) = (WH, V), VWH E VH. (4.35)
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Using (4.34) and the orthogonality of the Fourier modes in 0, from the above equation we
have

py V k-x = FHV (4.36)

Jk[ < kH

where FV represents a sharp cut-off filter in the wavenumber space. Note that while the
operation of PH is defined only on elements of V, FH may operate on any scalar, vector or
tensor with a finite L2 norm.

We are also interested in comparing the expressions for the Smagorinsky parameter
obtained using the variational counterpart of the Germano identity with those obtained
from the filtered version of this identity. In order to be consistent in this comparison we
choose the filtering operator to be the sharp cut-off filter in wavenumber space.

Dissipation method We are now in a position to estimate the Smagorinsky parameter.
We first consider the dissipation method applied to the variational Germano identity. Using
(4.33), (4.12) and (4.36) in (4.27), we arrive at

®' u) - (S2, uh ® uh) V E]T17 T2[, (4.37)

S= 2H2(S", IsHIsH) - h2(SH, IshIsh),

where uH = FHUh, Sh = VSuh and SH = VsuH. In deriving the above relation we have
made use of the L2 orthogonality of Fourier modes to eliminate all the bilinear terms in
(4.27).

The dissipation method when applied to filtered form of the Germano identity yields (see
for example [15]),

= /i(shu" ®uH) - (S gh ®uh)
cl V 2 H2(Sh, ISH IsH) - h2(SH, IShISh) E]T1, T2[ (4.38)

In comparing (4.37) and (4.38) the following observations may be made:

1. For both the variational and the filtered approach ((4.37) and (4.38), respectively) the
contribution from the linear terms on the right hand side of the Germano identity to
the numerator in the expression for c1 , is zero. In the filtered case, this is a consequence
of the Germano identity itself, whereas in the variational case this is due to the special
orthogonal properties of the basis functions and the restriction operator.

2. The first term in the numerator and the denominator of the variational equation (4.37)
contains SH in the weighting function slot, which is replaced by Sh in the filtered
equation (4.38). This is the only difference between these two expressions and it is a
direct consequence of the fact that in the variational case constraints are imposed on
the ideal model only for weighting functions contained in a finite dimensional subspace,
whereas in the filtered case constraints are imposed for all weighting functions.
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3. The fact that the filtered Germano identity represents a tensor relation and the
variational Germano identity represents a vector relation, does not lead to any
differences in the final expression for cl when using the dissipation method. This
is because in the filtered case, when using the dissipation method, the equation for
c, is obtained by contracting the Germano identity with the rate of strain tensor and
integrating the resulting scalar equation over Q. Using integration by parts it can
be shown that this is identical to contracting the divergence of the filtered Germano
identity with the velocity field and integrating the resulting scalar equation in 0, which
in turn amounts to interpreting the Germano identity as a vector relation.

Least squares method In order to estimate cl using the least squares method applied to
the variational form of the Germano identity we set

WH = e.e-k',j 1,2,3,4;Ik[ < kH, (4.39)

in (4.26) and then use (4.33), (4.12), (4.36) and the L2 orthogonality of Fourier modes to
arrive at

2cFHV• AM = FHV KA, Vt E]T 1,T 2[. (4.40)

where

M = h21ShISIh - H 2 1SHISH, (4.41)
f = uh®uh -_uH ®uH, (4.42)

and as before uH = FHuh, Sh = VSuh and SH = VSuH. Selecting cl such that sum of the
squares of the residual of (4.40) is minimized, we arrive at

cl = (]FHV • '],FH•v• ) ,Vt EJT 1 ,T 2 [. (4.43)

The least squares approach when applied to the filtered from of the Germano identity
yields (see [27])

c1= 1 (A, A) Vt EIT1,T 2 [, (4.44)

where

M = FH(h21ShISh) - H2 ISHISH, (4.45)
Kr = FH(uh ( Uh) _ UH ( UH. (4.46)

In comparing the expressions for the parameter derived using the variational and the
filtered versions of the least squares approach, that is (4.43) and (4.44), the following
observations may be made:
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1. In this case also for both the variational and the filtered approaches the contribution
from the linear terms to the Germano identity is zero. In the filtered case, this is a
consequence of the identity itself, whereas in the variational case this is due to the
properties of the basis functions and the restriction operator.

2. The definitions of Ar and M for the variational and filtered cases are similar. However,
in the variational case in equation (4.43), these tensors are operated upon by the sharp
cut-off filter FH, whereas in the filtered case ((4.45) & (4.46)), FH acts on only one
term in these tensors. This difference may be traced back to the observation that in
the variational approach the ideal model is constrained to satisfy a given relation only
for a finite subset of weighting functions, whereas in the filtered case it is required to
satisfy the relation for every weighting function.

3. The inner products that appear in the definition of cl in the variational case (4.43)
involve the divergence of the tensors .N and M, whereas in the filtered case (4.44)
they involve the tensors themselves. This is because the expression for the ideal model
and the Germano identity are vector relations in the variational case, whereas they are
tensor relations in the filtered case.

4.6 Numerical Examples

In this section we evaluate the performance of the variational Germano identity in predicting
the time dependent Smagorinsky constant during the large eddy simulation of the decay of
homogeneous isotropic turbulence. We compare the following methods:

1. The Dynamic Smagorinsky method, where the Smagorinsky parameter cl is obtained
using the dissipation method applied to the variational Germano identity (4.37).

2. The Dynamic Smagorinsky method with the least squares form of the variational
Germano identity (4.43).

3. The Dynamic Smagorinsky method with the dissipation form of the filtered Germano
identity (4.38).

4. The Dynamic Smagorinsky method with the least squares form of the filtered Germano
identity (4.44).

In the first problem we consider the decay of turbulence from a Taylor micro-scale
Reynolds number (Re,) of 90 to about 60 and compare the LES solutions to a benchmark
DNS calculation. In the second problem Re,\ decays from 716 to 626 and we compare the
LES results with experimental data. In both cases we perform the simulations using a
Fourier-spectral code. We advance in time using a third-order Runge-Kutta scheme. The
nonlinear terms (convective acceleration term and the model term) are evaluated on a grid
of size (3N/2)3 . The effect of molecular viscosity is accounted for exactly by utilizing an
appropriate integrating factor for each ODE [33].

53



4.6.1 ReA = 90

We compute the DNS solution with 256' modes. For this solution we use a random initial
condition with an energy spectrum given by E(k) = (q2/2A)(k 4/k5) exp(-2(k/kp) 2), where

the initial turbulent kinetic energy, 2 =, and the spectrum is peaked at kp = 3. The
length of the side of the cube, L = 27r and the kinematic viscosity v = 0.005. The same
spectrum was used in [31] to study the decay of low Reynolds number homogeneous isotropic
turbulence. The phase of the modes for the initial velocity field is chosen randomly and each
mode satisfies the divergence-free condition. The solution is allowed to evolve according
to the Navier-Stokes equations till a spectra with a physical k-51/ 3 range is obtained at
t -- T1 P 2.2. The evolution of the kinetic energy on a cross-section of the 256' DNS is shown
in the video clip. The animation starts from the random initial condition and ends at t = T1.
At this instant the Taylor-microscale Reynolds number is z 90. This velocity field is used
as an initial condition for all LES calculations, which are performed with kh/(27r/L) = 32
and kh/kH = 2. The DNS and LES solutions are evolved till t = T2= 3 which corresponds
to Re, = 60 and the results compared.

In Figure 4.1, we have plotted the variation of the Smagorinsky parameter cl as a function
of time for the LES methods. We observe that coefficient predicted by the filtered dissipation
approach is much higher than all the other coefficients. The coefficient predicted by the
filtered least squares approach is smaller than the dissipation approach. We also observe that
the coefficient predicted by the variational dissipation approach is very close to the filtered
least squares approach and that the coefficients predicted by the two variational methods
(dissipation and least squares) are closer to each other when compared to the coefficients
predicted by the two filtered methods.

It is worth pointing out that all the LES methods considered here differ from each other
only in the way the Smagorinsky parameter is evaluated. Hence the differences observed in
the values of this parameter are solely responsible for any difference in the final solutions.

In Figure 4.2, we have plotted the variation of the total resolved kinetic energy (kld < 32)
for the benchmark DNS solution and the LES solutions as a function of time. We observe
that to begin with all the models are overly dissipative. However they improve with time.
We also observe that the filtered dissipation approach, which attains the largest viscosity
(see Figure 4.1), is the most dissipative, whereas the performance of all the other methods
is virtually indistinguishable.

In Figure 4.3, we compare the energy spectra at t = T2= 3. We observe that all the
methods under-predict the energy in the fine scale modes. This in turn, lowers the transfer
of energy from the coarse scale modes to the fine scale modes leading to an over-prediction
of the energy in the coarse scale modes. We observe that the method with the largest
value of the Smagorinsky parameter, namely the filtered dissipation approach, is the least
accurate, whereas the one with the smallest parameter, the filtered least squares approach is
the most accurate. The variational dissipation approach yields results that are very similar
to the filtered least squares approach, whereas the variational least squares is somewhat more
inaccurate (though not as inaccurate as the filtered dissipation approach).

54



4.6.2 ReA = 716

In this section we compare the performance of the LES methods at a higher value of
Reynolds number. We utilize the experiment reported in [46] as the benchmark solution.
In our simulations, the length of the side of the cube L = 5.12, the kinematic viscosity
v = 1.5074 x 10- 4 and the initial spectra is given by equation (6) in [46]. A divergence-
free velocity field with random phases is used to initialize all LES calculations which are
performed with kh/(27r/L) = 32 and kh/kH = 2. The LES calculations are allowed to evolve
till t = 0.1267, when correlations between the velocity coefficients across different modes
have been established and the Smagorinsky parameters predicted by the various dynamic
procedures have attained a steady non-zero value. The velocity field is then rescaled so that
the spectra attains its original value. This velocity field is used initial condition for the LES
simulations. Using this approach the effect of the transient associated with the Smagorinsky
parameter starting from zero (due to random phases) is eliminated.

In Figure 4.4, we have plotted the variation of the Smagorinsky coefficient as a function
of time. Note that in this figure time is measured in the x/M units used in [46]. We note
that when compared with Figure 4.1, the values of the parameters in this figure are generally
higher. This may be attributed to a more extensive inertial range for the simulation reported
in Figure 4.4. We also observe that as before the filtered dissipation approach predicts the
largest value of the Smagorinsky parameter and the filtered least squares approach predicts
the smallest value. The variational methods predict values that are very close to each other.
These value are closer to the value for filtered least squares approach than to the filtered
dissipation approach.

In Figure 4.5, we have plotted the Energy spectra at t = T2 = 0.506 for the LES
simulations and the experimental result. This time corresponds to x/M = 48 in Kang
et al's experiment. We observe that the filtered dissipation approach has significantly
under-predicted the spectra at high wavenumbers. On the other hand, the filtered least
squares approach is somewhat under-dissipative leading to a slight pile-up of energy at high
wavenumbers. The results for the two variational methods (dissipation and least squares) lie
in between the two filtered methods and are about as accurate as the filtered least squares
method.

4.6.3 Summary and explanation of numerical results
Based on the results presented in this section (at Re, = 90 and 716) the following comments

may be made regarding the variational and the filtered forms of the Germano identity.

1. The variational form yields values of parameters that are less sensitive to the method
utilized in calculating them (dissipation or least squares).

2. The dissipation approach is observed to yield accurate results in the variational case,
whereas in the filtered case it is overly dissipative.

3. The results for the variational dissipation approach are about as accurate as that of
the filtered least squares approach. However the costs associated with implementing
this approach are lower. Thus it may represent a new, easier method for evaluating a
"more accurate" Smagorinsky parameter.
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From the numerical results presented in the previous section we observe that the value of
the Smagorinsky parameter calculated using the filtered dissipation approach is the highest.
We now provide an explanation for this. We conduct an a-priori analysis using the DNS
field at Re, = 90. We compare the expression for the filtered dissipation approach with its
variational counterpart. The difference between the numerators in these two expressions is
given by

kh

(sh - sH, uH ® uH) =LH Tn(k)dk (4.47)

where

T.(k)= i- Irk ' FT[V' (uH® UH)]kd " (4.48)

and k = Ikl. In the integral above, rk denotes the surface of a sphere of radius k in the
wavenumber space. Similarly, the difference between the denominator in (4.38) and (4.37)
is given by

(sh - sH, iSHiSH) = kH Td(k)dk (4.49)

where

Td(k) = - j '* FT[V. (ISHISH)]kdrk. (4.50)

In Figure 4.6, we have plotted T, and Td, scaled by their maximum values, as a function of
k. We observe that Td rapidly drops to zero beyond kH. As a result the denominators in
the expressions for cl for the filtered and the variational dissipation approach are about the
same. On the other hand, the decay in T, is much more gradual and the numerator for the
filtered approach is substantially larger. This leads to a larger value of cl for the filtered
formulation.

It is worth noting that the cause of this discrepancy between the filtered and the
variational formulations is the difference in the definition of an ideal model. In the filtered
formulation, an ideal model is assumed to represent the subgrid term pointwise, that is for
all weighting functions. This leads to a Germano identity wherein contribution from a model
applied at a cutoff wavenumber of kH, to modes greater than kH, is also included. This is not
the case for the variational formulation. In this case an ideal model represents the effect of
the subgrid terms only on a select number of weighting functions with wavenumbers smaller
than the cutoff wavenumber. As a result there are no terms in the Germano identity which
contain the effect of the model beyond the cutoff wavenumber. We note that this difference
between these two approaches is present for all flows and will carry over to more complex,
inhomogeneous flows.

For the least squares approach, we observe that the difference in the Smagorinsky
parameter evaluated using the filtered and the variational formulations is smaller. This
is remarkable considering that the terms responsible for the differences observed in the
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dissipation approach, are also present in the least squares approach (uH& UH in the
numerator of the filtered formulation versus FH(UH ®uH) in the numerator of the variational
formulation). However there is one crucial difference. The numerators in the least squares
approach contain the inner product of these terms with "other" terms, whose Fourier
coefficients beyond kH have been verified to be either very small (for the filtered formulation)
or identically zero (for the variational formulation). As a result, in this case, the differences
in u ® Ug and F H(uH ® UH) beyond kH do not play a significant role determining the
Smagorinsky parameter.

It is important to bear in mind that in the least squares approach, the divergence operator,
which is present in the variational formulation and absent from the dissipation formulation
is another source of differences. The precise effect of this operator on the Smagorinsky
parameter will be investigated in the future.

4.7 Conclusions

In this chapter we have derived the variational counterpart of the Germano identity for
the incompressible Navier-Stokes equations. This identity provides a means of determining
model parameters within the variational formulation of LES and is analogous to the Germano
identity derived in [15] for the filter-based LES formulation. We have identified the following
differences among the variational and the filtered versions of the Germano identity and traced
their origin to differences in the definition of an ideal model in the two cases:

1. Linear terms in the Navier-Stokes equations contribute to the variational formulation
and not to the filter-based formulation.

2. The variational formulation holds only for a finite dimensional space of weighting
functions, whereas the filter-based formulation holds pointwise.

3. The variational formulation is essentially a vector relation, while the filter-based
formulation is a tensor relation.

In light of the third point above, we have noted that the variational Germano identity is
similar to (though not the same as) the vector-level Germano identity discussed in [45].

We have applied the variational Germano identity to determine the Smagorinsky
parameter in the decay of homogeneous isotropic turbulence and compared its performance
with the filter-based formulation. We have found it to be accurate and robust, in that the
value of the parameter is less sensitive to the exact approach (dissipation or least-squares)
used in evaluating it. The example described in this chapter represents an initial result
of the application of the variational Germano identity. Other interesting applications to be
pursued in the future include determining multiscale parameters in the variational multiscale
formulation and determining parameters in cases (such as when using the finite element
method) where contributions from linear terms are non-zero.
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Figure 4.1: Variation of the Smagorinsky parameter c, with time for the low Reynolds
number simulation.
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Figure 4.2: Variation of the resolved kinetic energy (Ikl < 32) with time for the low Reynolds
number simulation.
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Figure 4.3: Energy spectra at t = T2 3 for the low Reynolds number simulation.
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Chapter 5

Variational Germano Identity Applied
*: to Computing Hydrodynamic Noise

5.1 Introduction

In this chapter we assess the performance of the LES models developed as part of this research
program in computing far-field noise. We consider the simple case of homogeneous isotropic
turbulence and apply Lighthill's acoustic analogy to compute noise. This decouples the
problem into two parts. In the first part we solve the incompressible Navier Stokes equations
to determine the fluctuating (turbulent) velocity field. For this purpose we consider sustained
turbulence which is driven by a forcing at low wavenumbers. We solve this problem on a
fine mesh, where the dissipation length scale is resolved, and then on a much coarser mesh
where various LES models are employed to represent the effect of the missing scales.

The velocity field from the turbulent problem is used to construct quadrupole sources
which drive the acoustic problem. The acoustic problem is transformed into the frequency
domain and then solved. Since we are dealing with an unbounded domain with simple
sources, an analytical solution to this problem is feasible. This solution is constructed
and used to determine the far-field acoustic pressure intensity as a function frequency and
wavenumber. The acoustic intensity is computed for sources obtained from the highly
resolved turbulent simulation (the Direct Numerical Solution, DNS) and those obtained from
LES models. The acoustic intensity for the LES models is compared to that of the DNS and
conclusions about their efficacy are drawn. This rather simple framework provides a useful
means to categorize the performance of LES models in predicting turbulence generated noise.

In the following section we derive an expression for the far-field acoustic intensity
corresponding to a homogeneous isotropic turbulence field. Thereafter we present results
comparing the performance of various LES models.

5.2 Expression for the Far-Field Acoustic Intensity

The use of LES velocity data in Lighthill's acoustic analogy allows for the computation of
the far-field acoustic pressure for low Mach number flows. The effect of the hydrodynamic
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fluid motion appears as a quadrapole source term in the wave equation

102( cOt2  V2p= V.V.r (5.1)

S= u ® u (5.2)

where c is the speed of sound in the ambient medium. The Helmholtz equation is
obtained by taking the Fourier transform in time of the wave equation, such that p(x, t) =

-(k2 + v2) = .V (5.3)

where f is the Fourier transform in time of 7 and k = W-C
Writing the solution in terms of a Green's function, the pressure becomes:

P(x, w) = j G(x; y)Vu. V. * t(y, w)d•y (5.4)

For an unbounded domain, the Green's function is

1e-iklx-VlG(x; y) = 47r Ix - YI (5.5)

The integral in (5.4) can be approximated assuming that x is in the far-field. The acoustic
pressure as a function of k, w and x is then:

p(x,k,w) = -k24--j ®9 : T(ký,w) (5.6)

where A = is the unit vector parallel to x and T(ký, w) is the space-time Fourier transform,
with wavenumber ký and frequency w, of r = U®u calculated from the incompressible velocity
field. This quantity is readily available from the incompressible Navier-Stokes calculation
provided a long enough time series of velocity data can be stored for calculating the Fourier
transform in time of the source term.

Since the turbulence is isotropic, an ensemble average of the acoustic pressure is equivalent
to an average over all directions, ý, of one realization of the acoustic pressure. By averaging
the acoustic pressure over all directions, a two variable function of the scaled noise intensity
as a function of k and w is obtained.

(47lxl)2 (p2(x, k, w)) = (((ký) 0 (k6): T(ký, w))2) (5.7)

That is the the scaled, far-field acoustic intensity is determined by the quantity
(((ký) 0 (k6) T(k: , W))2).
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5.3 Evaluation of LES Models

In Figure 5.1, a comparison is made between DNS and several LES schemes with regards
to the scaled acoustic intensity. Figure 5.1(a) shows the results from the DNS velocity
field while 5.1(d) shows the result from a LES with a constant Smagorinsky parameter. A
large improvement is observed when the variational Germano identity is used to determine
the Smagorinsky parameter (see Figure 5.1(b)). The best results are obtained when
the variational Germano identity is used to determine the parameter of a one parameter
multiscale model where the model is only applied to fine scale Fourier modes (Figure 5. 1(c)).

log<P(k,o))
2

>- DNS Iog<P(k,mo)
2

> - variational all-all

k k

(a) DNS (b) variational dynamic Smagorinsky

Iog<P(k,O))
2

> - variational all-small log<P(k,o))
2

> - static all-all

2 4 lo U 22 2 2. 4 4 1. 124 2
k k

(c) variational multiscale (d) static Smagorinsky

Figure 5.1: Comparison between DNS and LES of the normalized acoustic pressure intensity
as a function of Iki and w.

From the plots in Figure 5.1, the acoustic pressure frequency spectrum for a particular
medium is obtained by choosing a sound speed and taking a section of the plot along k = wic.
In each plot, lines are added corresponding to values of c = 10 and 50. These values of c
correspond to a Mach number of about M =0.1 and M = 0.02 which is well within the
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low-Mach number limit.
When an LES is performed, the Lighthill source term is only partially known. The

contribution from the fine scales is not available. To correct for this, the modeled subgrid
stress has been included in the source term such that, for the Smagorinsky model, 7- =
(uh ® uh + 2v2-(Csh) 2pV~uhIVsuh). In the results described above we have included this
term.
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